精英家教網 > 高中數學 > 題目詳情
在平面內,三角形的面積為S,周長為C,則它的內切圓的半徑γ=.在空間中,三棱錐的體積為V,表面積為S,利用類比推理的方法,可得三棱錐的內切球(球面與三棱錐的各個面均相切)的半徑R=   
【答案】分析:類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想).常用的思路有:由平面圖形中點的性質類比推理出空間里的線的性質,由平面圖形中線的性質類比推理出空間中面的性質,由平面圖形中面的性質類比推理出空間中體的性質.但由于類比推理的結果不一定正確,故我們還需要進一步的證明.
解答:解:結論:若三棱錐表面積為S,體積為V,則其內切球半徑r=”證明如下:
設三棱錐的四個面積分別為:S1,S2,S3,S4,
由于內切球到各面的距離等于內切球的半徑
∴V=S1×r+S2×r+S3×r+S4×r=S×r
∴內切球半徑r=
故答案為:
點評:本題考查的知識點是類比推理、棱錐的結構特征,在由平面圖形的性質向空間物體的性質進行類比時,常用的思路有:由平面圖形中點的性質類比推理出空間里的線的性質,由平面圖形中線的性質類比推理出空間中面的性質,由平面圖形中面的性質類比推理出空間中體的性質.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在平面內,三角形的面積為S,周長為C,則它的內切圓的半徑γ=
2SC
.在空間中,三棱錐的體積為V,表面積為S,利用類比推理的方法,可得三棱錐的內切球(球面與三棱錐的各個面均相切)的半徑R=
 

查看答案和解析>>

科目:高中數學 來源:2010-2011學年江西省六校高三聯(lián)考數學理卷 題型:填空題

在平面內,三角形的面積為S,周長為C,則它的內切圓的半徑.在空間中,三棱錐的體積為V,表面積為S,利用類比推理的方法,可得三棱錐的內切球(球面與三棱錐的各個面均相切)的半徑R=___________。

 

查看答案和解析>>

科目:高中數學 來源:寧德三縣市2010高三第二次聯(lián)考文科數學試題 題型:填空題

在平面內,三角形的面積為S,周長為C,則它的內切圓的半徑.在空間中,三棱錐的體積為V,表面積為S,利用類比推理的方法,可得三棱錐的內切球(球面與三棱錐的各個面均相切)的半徑R=______________________。

 

查看答案和解析>>

科目:高中數學 來源:寧德模擬 題型:填空題

在平面內,三角形的面積為S,周長為C,則它的內切圓的半徑γ=
2S
C
.在空間中,三棱錐的體積為V,表面積為S,利用類比推理的方法,可得三棱錐的內切球(球面與三棱錐的各個面均相切)的半徑R=______.

查看答案和解析>>

同步練習冊答案