在△ABC中,已知2
3
absinC=a2+b2-c2,則∠C=
 
考點(diǎn):余弦定理,正弦定理
專題:三角函數(shù)的求值
分析:利用余弦定理表示出cosC,整理后代入已知等式求出tanC的值,即可確定出C的度數(shù).
解答: 解:∵cosC=
a2+b2-c2
2ab
,∴a2+b2-c2=2abcosC,
代入已知等式得:2
3
absinC=2abcosC,即
3
sinC=cosC,
∴tanC=
3
3
,
則∠C=30°.
故答案為:30°
點(diǎn)評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,圓O交BC于D,過點(diǎn)D作圓O的切線DE交AC于點(diǎn)E,且DE⊥AC.求證:AC=2OD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,集合A={z|z=in,n∈N*},B={ω|ω=z1•z2,z1、z2∈A}(z1≠z2),從集合B中任取一元素,則該元素為實(shí)數(shù)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2-x的圖象與函數(shù)g(x)=
2x-x2
的圖象相交于A、B兩點(diǎn),則|AB|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+
2x-1
2x+1
+1,則滿足不等式f(2m-1)+f(m)>2的實(shí)數(shù)m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=(sinx+cosx)2+2cos2x-m在[0,
π
2
]上有零點(diǎn),則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

非零向量
a
,
b
滿足|
a
|=2,|
b
|=2,且|
a
-2
b
|∈(2,2
3
),則
a
,
b
夾角的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點(diǎn)P(-5,12),則sin(-π-α)-2cos(π-α)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于下列結(jié)論:
(1)平面內(nèi)到兩定點(diǎn)A(-2,0)和B(2,0)距離之和為4的點(diǎn)M的軌跡是橢圓;
(2)平面內(nèi)與一個定點(diǎn)A(1,3)和一條定直線l:2x+3y-11=0距離相等的點(diǎn)M的軌跡是拋物線;
(3)在平面直角坐標(biāo)系中,若方程m(x2+y2+2y+1)=(x-2y+3)2表示的曲線為橢圓,則實(shí)數(shù)m的取值范圍是(
5
,+∞);
(4)若不等式ax2+bx+c>0的解集是{x|-4<x<1},則不等式b(x2-1)+a(x+3)+c>0的解集為{x|-
4
3
<x<1};
(5)已知數(shù)列{an}滿足a1=33,an+1-an=2n,則
an
n
的最小值為
21
2
. 
其中正確的是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案