已知復(fù)數(shù)z1=cosα+isinα,z2=cosβ+isinβ,若|z1-z2|=
2
5
5
,則cos(α-β)=
 
考點(diǎn):復(fù)數(shù)求模
專題:計(jì)算題,數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的減法運(yùn)算,求出z1-z2,再利用|z1-z2|=
2
5
5
,結(jié)合兩角差的余弦公式,可求cos(α-β)的值.
解答: 解:∵z1=cosα+isinα,z2=cosβ+isinβ,
∴z1-z2=(cosα-cosβ)+i(sinα-sinβ),
∵|z1-z2|=
2
5
5
,
∴(cosα-cosβ)2+(sinα-sinβ)2=
4
5
,
∴cos(α-β)=
2-
4
5
2
=
3
5

故答案為:
3
5
點(diǎn)評(píng):本題考查復(fù)數(shù)的運(yùn)算,考查復(fù)數(shù)的模,考查兩角差的余弦公式,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商店經(jīng)營(yíng)一批進(jìn)價(jià)為每件5元的商品,在市場(chǎng)調(diào)查時(shí)發(fā)現(xiàn),此商品的銷售單價(jià)x與日銷售量y之間有如下關(guān)系:
x 5 6 7 8
y 10 8 7 3
(1)求x,y之間的線性回歸方程;
(2)當(dāng)銷售單價(jià)為4元時(shí),估計(jì)日銷售量是多少?(結(jié)果保留整數(shù))(參考數(shù)據(jù):
4
i=1
xiyi-4
.
x
.
y
=-11,
4
i=1
xi2-4
.
x
2=5,
4
i=1
yi2-4
.
y
2=26)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式6-5x-x2<0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線x+2y+1=0與直線mx+4y+7=0平行,則實(shí)數(shù)m的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在等比數(shù)列{an}中,若m+2n+p=s+2t+r,m,n,p,s,t,r∈N*,則am•an2•ap=as•at2•ar.類比此結(jié)論,可得到等差數(shù)列{bn}的一個(gè)正確命題,該命題為:在等差數(shù)列{bn}中,若m+2n+p=s+2t+r,m,n,p,s,t,r∈N*,則
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)隨機(jī)變量ξ的概率分布為P(ξ=k)=
a
2k
,a為常數(shù),k=1,2,3,4,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
+
b
+
c
=
0
,且|
a
|=3,|
b
|=4,|
c
|=5,則
a
b
+
b
c
+
c
a
=
 
,
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知樣本數(shù)據(jù){x1,x2,…,xn}的方差為a,則樣本數(shù)據(jù){2x1+1,2x2+1,…,2xn+1}的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|x+1≥0},集合B=|x|x≥0},則A∪B=(  )
A、∅
B、[0,+∞)
C、[-1,+∞)
D、[1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案