(1)橢圓C:(a>b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是橢圓C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,求證:為定值b2-a2。
(2)由(1)類(lèi)比可得如下真命題:雙曲線C:(a>0,b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是雙曲線C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,則為定值,請(qǐng)寫(xiě)出這個(gè)定值(不要求給出解題過(guò)程)。
解:(1)設(shè)點(diǎn)P(x0,y0),x0≠±a
依題意,得A(-a,0),B(a,0),
∴直線PA的方程為
令x=0,得
同理可得

∵點(diǎn)P(x0,y0)是橢圓C上一點(diǎn)




。
(2)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過(guò)點(diǎn)(0,1),離心率e=
3
2

(l)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′(A′與B不重合),則直線A′B與x軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)(0,1),離心率e=
3
2

(1)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于A、B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A′.
①求△AOB的面積的最大值(O為坐標(biāo)原點(diǎn));
②“當(dāng)m變化時(shí),直線A′B與x軸交于一個(gè)定點(diǎn)”.你認(rèn)為此推斷是否正確?若正確,請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1為橢圓C:
x2
2
+y2=1
的左焦點(diǎn),直線l:y=x-1與橢圓C交于A、B兩點(diǎn),那么|F1A|+|F1B|的值為
8
2
3
8
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過(guò)點(diǎn)(p,q),離心率e=
3
2
.其中p,q分別表示標(biāo)準(zhǔn)正態(tài)分布的期望值與標(biāo)準(zhǔn)差.
(1)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于A,B兩點(diǎn),點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)為A'.①試建立△AOB的面積關(guān)于m的函數(shù)關(guān)系;②莆田十中高三(1)班數(shù)學(xué)興趣小組通過(guò)試驗(yàn)操作初步推斷:“當(dāng)m變化時(shí),直線A'B與x軸交于一個(gè)定點(diǎn)”.你認(rèn)為此推斷是否正確?若正確,請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)橢圓Ca>b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是橢圓C上異于A、B的任意一點(diǎn),直線PAPB分別與y軸交于點(diǎn)M、N,求證:為定值

(2)由(1)類(lèi)比可得如下真命題:雙曲線Ca>0,b>0)與x軸交于A、B兩點(diǎn),點(diǎn)P是雙曲線C上異于A、B的任意一點(diǎn),直線PA、PB分別與y軸交于點(diǎn)M、N,求證:為定值.請(qǐng)寫(xiě)出這個(gè)定值(不要求給出解題過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案