已知數(shù)列{an}的首項為1,前n項和Sn滿足
Sn
=
Sn-1
+1(n≥2).
(Ⅰ)求Sn與數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
1
anan+1
(n∈N*),求使不等式b1+b2+…+bn
12
25
成立的最小正整數(shù)n.
考點:數(shù)列與不等式的綜合,數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)通過數(shù)列的遞推關(guān)系式,判斷
Sn
是等比數(shù)列,求出通項公式,然后求Sn與數(shù)列{an}的通項公式;
(Ⅱ)化簡bn=
1
anan+1
(n∈N*),通過裂項法求使不等式b1+b2+…+bn,然后解不等式,即可求出不等式成立的最小正整數(shù)n.
解答: 解:(Ⅰ)因為
Sn
=
Sn-1
+1(n≥2),
所以
Sn
是首項為1,公差為1的等差數(shù)列,…(1分)
Sn
=1+(n-1)1=n,…(2分)
從而Sn=n2.…(3分)
當n=1時,a1=S1=1,
當n>1時,an=Sn-Sn-1=n2-(n-1)2=2n-1.
因為a1=1也符合上式,
所以an=2n-1.…(6分)
(Ⅱ)由(Ⅰ)知bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,…(8分)
所以b1+b2+…+bn=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1
)

=
1
2
(1-
1
2n+1
)
=
n
2n+1
,…(10分)
n
2n+1
12
25
,解得n>12.…(12分)
所以使不等式成立的最小正整數(shù)為13.…(13分)
點評:本小題主要考查數(shù)列、不等式等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列|an|滿足a1+a2+a3+…+an=2n2-3n,則a5=(  )
A、9B、12C、15D、18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

運行如圖所示的程序框圖,則輸出的結(jié)果S為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合A={x|x2<4,x∈Z},B={x|x≤3,x∈N},定義A•B={(x,y)|x∈A∩B,y∈A∪B},則A•B的非空真子集的個數(shù)共有( 。
A、8B、10
C、1024D、1022

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+
1
2
ax2+b(a,b∈R).
(Ⅰ)若曲線y=f(x)在x=1處的切線為y=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:對任意給定的正數(shù)m,總存在實數(shù)a,使函數(shù)f(x)在區(qū)間(m,+∞)上不單調(diào);
(Ⅲ)若點A(x1,y1),B(x2,y2)(x2>x1>0)是曲線f(x)上的兩點,試探究:當a<0時,是否存在實數(shù)x0∈(x1,x2),使直線AB的斜率等于f'(x0)?若存在,給予證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求導:f(x)=2x-lnx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

傳染性非典型性肺炎(簡稱“非典“)是一種急性傳染。呈性2003年4月發(fā)生了非典疫情,據(jù)資料統(tǒng)計,4月1日,該市的新感染者為20人,此后,每天的新感染者平均比前一天的新感染者多10人.由于該市各部門通力合作,采取隔離措施(還沒有特效藥問世),使非典的傳播得到了控制.從某天起,每天的新感染者平均比前一天的新感染者少8人,到4月30日止,該市在這30日內(nèi)感染該病的患者共有2196人.問:4月幾日該市感染該病的人數(shù)最多?求這一天的新感染人數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=logm
x+1
1-x
(m>0,且m≠1)
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性;
(3)解關(guān)于x的方程f(x)=logm
1
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=x2-2bx+6在(2,8)內(nèi)是增函數(shù),求b的取值范圍
 

查看答案和解析>>

同步練習冊答案