已知點(diǎn),若動(dòng)點(diǎn)滿足
(1)求動(dòng)點(diǎn)的軌跡曲線的方程;
(2)在曲線上求一點(diǎn),使點(diǎn)到直線:的距離最。

(1);(2).

解析試題分析:本題考查計(jì)算能力和參數(shù)方程在求圓錐曲線最值中的應(yīng)用.(1)由向量的坐標(biāo)運(yùn)算,模公式可列出式子,化簡(jiǎn)求解;(2)將橢圓方程化為參數(shù)方程,由點(diǎn)到直線的距離公式,轉(zhuǎn)化為求三角函數(shù)的最值.
試題解析:(1)設(shè)點(diǎn)坐標(biāo)為,則,,.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4f/3/khoz6.png" style="vertical-align:middle;" />,所以,化簡(jiǎn)得.
所以動(dòng)點(diǎn)的軌跡為.
(2)點(diǎn)上,設(shè)點(diǎn)坐標(biāo)為.
到直線的距離為
,
當(dāng)時(shí)有最小值,
此時(shí)點(diǎn)坐標(biāo)為.
考點(diǎn):1、平面向量的坐標(biāo)運(yùn)算;2、橢圓方程及其性質(zhì);3、點(diǎn)到直線的距離公式;4、橢圓的參數(shù)方程;5、三角恒等變換與三角函數(shù)運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓,
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍;
(3)過(guò)原點(diǎn)任意作兩條互相垂直的直線與橢圓相交于四點(diǎn),設(shè)原點(diǎn)到四邊形的一邊距離為,試求時(shí)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓)右頂點(diǎn)到右焦點(diǎn)的距離為,短軸長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)左焦點(diǎn)的直線與橢圓分別交于、兩點(diǎn),若線段的長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),右準(zhǔn)線為,離心率為.若直線與橢圓交于不同的兩點(diǎn),以線段為直徑作圓.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若圓軸相切,求圓被直線截得的線段長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

知橢圓的左右焦點(diǎn)為F1,F(xiàn)2,離心率為,以線段F1 F2為直徑的圓的面積為,   (1)求橢圓的方程;(2) 設(shè)直線l過(guò)橢圓的右焦點(diǎn)F2(l不垂直坐標(biāo)軸),且與橢圓交于A、B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)M(m,0),試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,已知曲線上任意一點(diǎn)到點(diǎn)的距離與到直線的距離相等.
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)軸上的兩點(diǎn),過(guò)點(diǎn)分別作軸的垂線,與曲線分別交于點(diǎn),直線與x軸交于點(diǎn),這樣就稱確定了.同樣,可由確定了.現(xiàn)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn),

(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長(zhǎng)的最小值;
(Ⅲ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過(guò)某定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,曲線上任意一點(diǎn)分別與點(diǎn)、連線的斜率的乘積為
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)直線軸、軸分別交于、兩點(diǎn),若曲線與直線沒(méi)有公共點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線與雙曲線有公共焦點(diǎn),點(diǎn)是曲線在第一象限的交點(diǎn),且
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點(diǎn)為圓心的圓與直線相切,圓.過(guò)點(diǎn)作互相垂直且分別與圓、圓相交的直線,設(shè)被圓截得的弦長(zhǎng)為,被圓截得的弦長(zhǎng)為,問(wèn):是否為定值?如果是,請(qǐng)求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案