【題目】50名學(xué)生調(diào)查對(duì)A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對(duì)A、B都不贊成的學(xué)生數(shù)比對(duì)AB都贊成的學(xué)生數(shù)的三分之一多1. 問對(duì)A、B都贊成的學(xué)生有____________

【答案】21

【解析】

贊成的人數(shù),贊成的人數(shù)為,設(shè)對(duì)A、B都贊成的學(xué)生為,則對(duì)A、B都不贊成的學(xué)生數(shù)為,畫出韋恩圖,形象的表示出各數(shù)量間的聯(lián)系即可求出都贊成的學(xué)生數(shù).

贊成的人數(shù)為,贊成的人數(shù)為

畫出韋恩圖,如圖,記名學(xué)生組成的集合為

贊成事件的學(xué)生全體為集合,贊成事件的學(xué)生全體為集合,

對(duì)A、B都贊成的學(xué)生為,則對(duì)A、B都不贊成的學(xué)生數(shù)為

贊成而不贊成的人數(shù)為,贊成而不贊成的人數(shù)為,

依題意,解得

故答案為:21

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):由表中數(shù)據(jù),求得線性回歸方程為,若從這些樣本中任取一點(diǎn),則它在回歸直線左下方的概率為______.

單價(jià)(元)

4

5

6

7

8

9

銷量(件)

90

84

83

80

75

68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

(1)的兩個(gè)不同零點(diǎn),是否存在實(shí)數(shù),使成立?若存在,的值;若不存在,請(qǐng)說明理由.

(2)設(shè),函數(shù),存在個(gè)零點(diǎn).

(i)的取值范圍;

(ii)設(shè)分別是這個(gè)零點(diǎn)中的最小值與最大值,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校高一年級(jí)開設(shè)、、、五門選修課,每位同學(xué)須彼此獨(dú)立地選三課程,其中甲同學(xué)必選課程,不選課程,另從其余課程中隨機(jī)任選兩門課程.乙、丙兩名同學(xué)從五門課程中隨機(jī)任選三門課程.

Ⅰ)求甲同學(xué)選中課程且乙同學(xué)未選中課程的概率.

Ⅱ)用表示甲、乙、丙選中課程的人數(shù)之和,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù)有如下四個(gè)結(jié)論:

是偶函數(shù);②在區(qū)間上單調(diào)遞增;③最大值為;④上有四個(gè)零點(diǎn),其中正確命題的序號(hào)是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知有限集. 如果中元素滿足,就稱復(fù)活集,給出下列結(jié)論:

①集合復(fù)活集;

②若,且復(fù)活集,則;

③若,則不可能是復(fù)活集;

④若,則復(fù)活集有且只有一個(gè),且.

其中正確的結(jié)論是____________.(填上你認(rèn)為所有正確的結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn),若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,,分別是的中點(diǎn),求證:

(1)底面;

(2)平面平面;

(3)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代名詞“芻童”原來是草堆的意思,古代用它作為長方體棱臺(tái)(上、下底面均為矩形額棱臺(tái))的專用術(shù)語,關(guān)于“芻童”體積計(jì)算的描述,《九章算術(shù)》注曰:“倍上表,下表從之,亦倍小表,上表從之,各以其廣乘之,并,以高若深乘之,皆六面一.”其計(jì)算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘;將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個(gè)數(shù)值相加,與高相乘,再取其六分之一,以此算法,現(xiàn)有上下底面為相似矩形的棱臺(tái),相似比為,高為3,且上底面的周長為6,則該棱臺(tái)的體積的最大值是( )

A. 14 B. 56 C. D. 63

查看答案和解析>>

同步練習(xí)冊(cè)答案