【題目】已知二次函數(shù).

1)若的定義域和值域均是,求實數(shù)的值;

2)若在區(qū)間上是減函數(shù),求在區(qū)間上的最小值和最大值;

3)若在區(qū)間上有零點,求實數(shù)的取值范圍.

【答案】123

【解析】

(1)因為,即,上單調(diào)遞減,即可求得答案;

(2),其對稱軸為且圖象開口向上,又因為在區(qū)間上是減函數(shù),根據(jù)二次函數(shù)圖象可得:,故(注:更接近對稱軸為),即可求得答案;

(3)因為在區(qū)間上有零點,分別討論,即可求得答案.

(1)

可化簡為:,

根據(jù)二次函數(shù)知識可得:其對稱軸為

上單調(diào)遞減,

則有,即

解得:

(2),其對稱軸為且圖象開口向上

在區(qū)間上是減函數(shù)

根據(jù)二次函數(shù)圖像可得:,

(注:更接近對稱軸為)

上單調(diào)遞減,在上單調(diào)遞增:

(3)①當時,

,其對稱軸為且圖象開口向上

在區(qū)間是減函數(shù)

,

在區(qū)間上無零點;

②當時,上單調(diào)遞減,在上單調(diào)遞增;

,

由上述知:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱 中,側(cè)面和側(cè)面都是矩形, 是邊長為的正三角形, 分別為的中點.

(1)求證: 平面

(2)求證:平面平面.

(3)若平面,求棱的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于區(qū)間[a,b](a<b),若函數(shù)同時滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間

(1)求函數(shù)的所有“保值”區(qū)間

(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設正數(shù)滿足會且使得關(guān)于的不等式總有實數(shù)解.試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4張牌(如圖)每張牌的一面都寫上一個英文字母,另一面都寫上一個數(shù)字.規(guī)定:當牌的一面為字母時,它的另一面必須寫數(shù)字2.你的任務是:為了檢驗下面的4張牌是否有違反規(guī)定的寫法,你翻看哪幾張牌就夠了.你的選擇是( ).

A. B. 、

C. 、 D. 非以上答案

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為測試特斯拉汽車的百米加速時間,研發(fā)人員記錄了汽車在、、、、時刻的位移,并對數(shù)據(jù)做了初步處理,得到圖.同時,令,得到數(shù)據(jù)圖,現(xiàn)畫出的散點圖.

累加

累加

1)根據(jù)散點圖判斷,,哪兩個量之間線性相關(guān)程度更強?(直接給出判斷即可);

2)根據(jù)(1)的結(jié)果選擇線性相關(guān)程度更強的兩個量,建立相應的回歸直線方程;

3)根據(jù)(2)的結(jié)果預計特斯拉汽車百米加速需要的時間.

附:對于一組數(shù)據(jù)、、,其回歸直線的斜率和截距的最小二乘估計分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,六芒星是由兩個全等正三角形組成,中心重合于點且三組對邊分別平行,點六芒星(如圖)的兩個頂點,動點六芒星上(內(nèi)部以及邊界),若,則的取值可能是(

A.B.1C.5D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù)

(Ⅰ)若是函數(shù)的一個極值點,求此時函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若對任意的,,不等式恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四邊形中,,,,

(1)求的長;

(2)若,求四邊形的面積.

查看答案和解析>>

同步練習冊答案