【題目】設(shè)數(shù)列A: ,… ().如果對小于()的每個正整數(shù)都有 ,則稱是數(shù)列A的一個“G時刻”.是數(shù)列A的所有“G時刻組成的集合.

(1)對數(shù)列A:-2,2,-1,1,3,寫出的所有元素;

(2)證明:若數(shù)列A中存在使得>,則 ;

(3)證明:若數(shù)列A滿足- ≤1(n=2,3, …,N),的元素個數(shù)不小于 -.

【答案】(1)的元素為;(2)詳見解析;(3)詳見解析.

【解析】

試題()關(guān)鍵是理解“G時刻的定義,根據(jù)定義即可寫出的所有元素;

)要證,即證中含有一元素即可;

)當(dāng)時,結(jié)論成立.只要證明當(dāng)時結(jié)論仍然成立即可.

試題解析:(的元素為.

)因為存在使得,所以.

,

,且對任意正整數(shù).

因此,從而.

)當(dāng)時,結(jié)論成立.

以下設(shè).

由()知.

設(shè)..

.

,記.

如果,取,則對任何.

從而.

又因為中的最大元素,所以.

從而對任意,特別地,.

.

因此.

所以.

因此的元素個數(shù)p不小于.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,令,若,的兩個極值點,且,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)求函數(shù)在區(qū)間上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)的生活豐富多彩,很多學(xué)生除了學(xué)習(xí)本專業(yè)的必修課外,還會選擇一些選修課來充實自已.甲同學(xué)調(diào)查了自己班上的名同學(xué)學(xué)習(xí)選修課的情況,并作出如下表格:

每人選擇選修課科數(shù)

頻數(shù)

1)求甲同學(xué)班上人均學(xué)習(xí)選修課科數(shù):

2)甲同學(xué)和乙同學(xué)的某門選修課是在同一個班,且該門選修課開始上課的時間是早上,已知甲同學(xué)每次上課都會在之間的任意時刻到達(dá)教室,乙同學(xué)每次上課都會在之間的任意時刻到達(dá)教室,求連續(xù)天內(nèi),甲同學(xué)比乙同學(xué)早到教室的天數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求的單調(diào)區(qū)間和極值;

2)若對于任意的,都存在,使得,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以橢圓的中心O為圓心,以為半徑的圓稱為該橢圓的伴隨.已知橢圓的離心率為,且過點

1)求橢圓C及其伴隨的方程;

2)過點伴隨的切線l交橢圓CA,B兩點,記為坐標(biāo)原點)的面積為,將表示為m的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的單調(diào)性;

2)若函數(shù)有極大值點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點到準(zhǔn)線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線段的中點為,點的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201835日上午,李克強(qiáng)總理做政府工作報告時表示,將新能源汽車車輛購置稅優(yōu)惠政策再延長三年,自201811日至20201231日,對購置的新能源汽車免征車輛購置稅.新能源汽車銷售的春天來了!從衡陽地區(qū)某品牌新能源汽車銷售公司了解到,為了幫助品牌迅速占領(lǐng)市場,他們采取了保證公司正常運(yùn)營的前提下實行薄利多銷的營銷策略(即銷售單價隨日銷量(臺)變化而有所變化),該公司的日盈利(萬元),經(jīng)過一段時間的銷售得到,的一組統(tǒng)計數(shù)據(jù)如下表:

日銷量

1

2

3

4

5

日盈利萬元

6

13

17

20

22

將上述數(shù)據(jù)制成散點圖如圖所示:

1)根據(jù)散點圖判斷中,哪個模型更適合刻畫,之間的關(guān)系?并從函數(shù)增長趨勢方面給出簡單的理由;

2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并預(yù)測當(dāng)日銷量時,日盈利是多少?

參考公式及數(shù)據(jù):線性回歸方程,其中;

,,

,.

查看答案和解析>>

同步練習(xí)冊答案