已知函數(shù).
(Ⅰ)若,求的取值范圍;
(Ⅱ)若是以2為周期的偶函數(shù),且當時,有.
求當時,函數(shù)的解析式.
(Ⅰ)  (Ⅱ)
本試題主要是考查了函數(shù)解析式的求解和函數(shù)的單調(diào)性和奇偶性的綜合運用以及不等式的求解問題。
(1)因為
,得.
求解交集得到結(jié)論。
(2)因為是以2為周期的偶函數(shù),且當時,有
當xÎ2時,2-xÎ,因此
那么可知結(jié)論。
解:(Ⅰ)
,得.
 
因為,所以,.
 
(Ⅱ)當xÎ2時,2-xÎ,因此
  
時,
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

下列命題:
①偶函數(shù)的圖像一定與軸相交;  ②定義在上的奇函數(shù)必滿足;
既不是奇函數(shù)又不是偶函數(shù);
,則的映射;
上是減函數(shù).
其中真命題的序號是(把你認為正確的命題的序號都填上)       .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

、已知向量="(1,2)," =(-2,1),k,t為正實數(shù),向量 = +(t+1), =-k+
(1)若,求k的最小值;
(2)是否存在正實數(shù)k、t,使?  若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是偶函數(shù),則,的大小關系為( )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)的周期為2,當,那么函數(shù)的圖象與函數(shù)的圖象的交點共有          

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本題滿分14分)
已知.
(1)判斷并證明的奇偶性;
(2)判斷并證明的單調(diào)性;
(3)若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)
(1) 設,,當時,求的單調(diào)區(qū)間和值域;
(2)設為偶數(shù)時,,,求的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知定義在R上的奇函數(shù)滿足,且在區(qū)間[3,5]上是單調(diào)遞增,則函數(shù)在區(qū)間[1,3]上的最值是(   )
A.最大值是,最小值是B.最大值是,最小值是
C.最大值是,最小值是D.最大值是,最小值是

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)=是R上的減函數(shù),則取值范圍是(   )
A.(0,1)B.(0,C.(,1)D.

查看答案和解析>>

同步練習冊答案