已知函數(shù)f(x)=
2x,x<0
f(x-1)+1,x≥0
,則f(2014)=( 。
A、2014
B、
4029
2
C、2015
D、
4031
2
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù),直接代入進(jìn)行求解即可.
解答: 解:當(dāng)x≥0時,f(x)=f(x-1)+1,即此時函數(shù)的周期是1,
則f(2014)=f(2013)+1=…=f(0)+2014=f(-1)+2015=
1
2
+2015
=
4031
2

故選:D.
點(diǎn)評:本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)的表達(dá)式是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a3+a4-a5+a6=8,則S7=( 。
A、8B、21C、28D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖如圖所示,其中俯視圖是圓,且該幾何體的體積為V1;直徑為2的球的體積為V2.則V1:V2=(  )
A、1:4B、1:2
C、1:1D、2:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知
AB
AC
=4,|
BC
|=3,M、N分別是BC邊上的三等分點(diǎn),則
AM
AN
的值是(  )
A、5
B、
21
4
C、6
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若Z=
2-i
1+i
(i為虛數(shù)單位),則Z的共軛復(fù)數(shù)為( 。
A、
1
2
+
3
2
i
B、-
1
2
+
3
2
i
C、
3
2
+
3
2
i
D、
3
2
-
3
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
x2+y2≤1
x+y≤1
y≥0
,則z=x-y的取值范圍是(  )
A、[-
2
,1]
B、[-1,1]
C、[-
2
,
2
]
D、[-1,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+1)+mx(x>-1).
(Ⅰ)若f(x)在x=1的切線平行于x軸,求實(shí)數(shù)m的值;
(Ⅱ)已知結(jié)論:對任意-1<a<b,存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
,求證:函數(shù)g(x)=
f(x2)-f(x1)
x2-x1
(x1-x)+f(x1)(其中-1<x1<x2)對任意x1<x<x2,都有f(x)>g(x);
(Ⅲ)已知正數(shù)λ1,λ2滿足λ12=1,求證:對任意-1<x1<x2,都有f(λ1x12x2)>λ1f(x1)+λ2f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(x+a)-x2-x在x=0處取得極值.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若關(guān)于x的方程f(x)=-
5
2
x+b在區(qū)間[0,2]上恰有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;
(Ⅲ)證明:對任意的正整數(shù)n,不等式2+
3
4
+
4
9
+…+
n+1
n2
>ln(n+1)都成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin2θ+2cosθ=-2,則cosθ=
 

查看答案和解析>>

同步練習(xí)冊答案