【題目】已知拋物線上一點到其焦點的距離為5.

1)求的值;

2)設(shè)動直線與拋物線相交于,兩點,問:在軸上是否存在與的取值無關(guān)的定點,使得?若存在,求出點的坐標;若不存在,說明理由.

【答案】1,; 2)存在點.

【解析】

1)由拋物線上點的焦半徑為可求得,從而再求得;

2)假設(shè)設(shè)存在點滿足條件,令,,條件轉(zhuǎn)化為,即,整理得:,由直線方程與拋物線方程聯(lián)立后消去(注意討論的情形),得的方程,由韋達定理得,代入它是與無關(guān)的等式,從而可得

1)根據(jù)拋物線定義,點到焦點的距離等于它到準線的距離,即

,解得,∴拋物線方程為

在拋物線上,得,∴.

2)拋物線方程為:,

,直線只與拋物線有一個交點,顯然不成立,

時,令,,設(shè)存在點滿足條件,

即:,

,

整理得:,

,整理得,

,,

,

,解的,

因此存在點滿足題意.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點在橢圓上,、分別為的左、右頂點,直線的斜率之積為為橢圓的右焦點,直線.

1)求橢圓的方程;

2)直線過點且與橢圓交于、兩點,直線、分別與直線交于兩點.試問:以為直徑的圓是否過定點?如果是,求出定點坐標,否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當時,設(shè)函數(shù)有最小值,求的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在直角梯形中,ABCD,,且.現(xiàn)以為一邊向梯形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,如圖2.

(Ⅰ)求證:BC⊥平面DBE;

(Ⅱ)求點D到平面BEC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上恰有兩個不同的零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),;

若函數(shù)上存在零點,求a的取值范圍;

設(shè)函數(shù),,當時,若對任意的,總存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花圃為提高某品種花苗質(zhì)量,開展技術(shù)創(chuàng)新活動,在,實驗地分別用甲、乙方法培訓該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質(zhì)花苗.

(Ⅰ)求圖中的值;

(Ⅱ)用樣本估計總體,以頻率作為概率,若在,兩塊試驗地隨機抽取3棵花苗,求所抽取的花苗中的優(yōu)質(zhì)花苗數(shù)的分布列和數(shù)學期望;

(Ⅲ)填寫下面的列聯(lián)表,并判斷是否有90%的把握認為優(yōu)質(zhì)花苗與培育方法有關(guān).

優(yōu)質(zhì)花苗

非優(yōu)質(zhì)花苗

合計

甲培育法

20

乙培育法

10

合計

附:下面的臨界值表僅供參考.

0.15

0.10

0.05

0.025

0.010

0.005

<>0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果函數(shù)yf(x)的導函數(shù)的圖象如圖所示,給出下列判斷:

①函數(shù)yf(x)在區(qū)間內(nèi)單調(diào)遞增;

②函數(shù)yf(x)在區(qū)間內(nèi)單調(diào)遞減;

③函數(shù)yf(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;

④當x2時,函數(shù)yf(x)有極小值;

⑤當x時,函數(shù)yf(x)有極大值.

則上述判斷中正確的是(  )

A. ①② B. ②③

C. ③④⑤ D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若存在實數(shù)使得則稱是區(qū)間一內(nèi)點.

(1)求證:的充要條件是存在使得是區(qū)間一內(nèi)點;

(2)若實數(shù)滿足:求證:存在,使得是區(qū)間一內(nèi)點;

(3)給定實數(shù),若對于任意區(qū)間,是區(qū)間的一內(nèi)點,是區(qū)間的一內(nèi)點,且不等式和不等式對于任意都恒成立,求證:

查看答案和解析>>

同步練習冊答案