函數(shù)y=(
1
2
1-x的單調(diào)遞增區(qū)間是
 
考點:指數(shù)型復(fù)合函數(shù)的性質(zhì)及應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系即可得到結(jié)論.
解答: 解:∵y=(
1
2
1-x=2x-1,
∴設(shè)t=x-1,則y=2t,
則函數(shù)t=x-1,y=2t,在各種的定義域上都是增函數(shù),
∴y=(
1
2
1-x=2x-1在R上也是單調(diào)遞增,
即函數(shù)的遞增區(qū)間為(-∞,+∞),
故答案為:(-∞,+∞)
點評:本題主要考查復(fù)合函數(shù)的單調(diào)性的判定,利用指數(shù)函數(shù)的單調(diào)性的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖已知△ABC中,AB=1,AC=2,∠BAC=120°,點M是邊BC上的動點,動點N滿足∠MAN=30°(點A,M,N按逆時針方向排列).
(1)若
AN
=2
AC
,求BN的長;
(2)若
AM
AN
=3,求△ABN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(π+α)=-
1
3
,求
sin2(
π
2
-α)+4cos2α
10cos2α-sin2α
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當k∈Z時,
sin(kπ-α)•cos(kπ-α)
sin[(k+1)π+α]•cos[(k+1)π-α]
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩直線x-
3
y=0與x-1=0夾角的平分線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b都是正實數(shù),函數(shù)y=aex+b的圖象過點(0,1),則
1
a
+
1
b
的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上且以4為周期的奇函數(shù),當x∈(0,2)時,f(x)=ln(x2-x+b),若函數(shù)f(x)在區(qū)間[-2,2]上的零點個數(shù)為5,則實數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

∠α和∠β的終邊分別為OA和OB,OA過點M(-sinθ,cosθ),OA和OB關(guān)于y=x對稱,則∠β的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC的三視圖如圖所示,其中P是直角頂點.設(shè)M是面ABC內(nèi)一點.定義f(M)=(m,n,p),其中m、n、p分別是三棱錐M-PAB、三棱錐M-PBC、三棱錐M-PCA的體積.若f(M)=(6,x,y),且
1
x
+
a
y
≥8恒成立,則正實數(shù)a的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案