【題目】已知函數(shù).
(1)判斷函數(shù)的單調(diào)性;
(2)若對(duì)任意時(shí),都有,求實(shí)數(shù)a的取值范圍.
【答案】(1)當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;當(dāng)時(shí),為常量函數(shù),不存在單調(diào)性;當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減;(2).
【解析】
(1)要判斷函數(shù)的單調(diào)性,需求導(dǎo)數(shù),對(duì)進(jìn)行討論;
(2)由,得, 令,計(jì)算,然后分,,三種情況討論即可.
解:(1)函數(shù)的定義域?yàn)?/span>,
,
當(dāng)時(shí),令,得;
令,得,
故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;
當(dāng)時(shí),為常量函數(shù),不存在單調(diào)性;
當(dāng)時(shí),令,得;
令,得,
故函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(2)由,
得,
得,
得,
得,
令,
則.
由題意知,,則有,所以.
①若,則當(dāng)時(shí),,在上單調(diào)遞減,
而,不滿足;
②若,當(dāng)時(shí),,在上單調(diào)遞減;
當(dāng)時(shí),,在上單調(diào)遞增,
故在上的最小值為.
由題意得,
解得,所以;
③若,則當(dāng)時(shí),,在上單調(diào)遞增,又,
故時(shí),恒成立.
綜上,實(shí)數(shù)a的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今,手機(jī)已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機(jī)的人冠上了名號(hào)“低頭族”,手機(jī)已經(jīng)嚴(yán)重影響了人們的生活.一媒體為調(diào)查市民對(duì)低頭族的認(rèn)識(shí),從某社區(qū)的500名市民中隨機(jī)抽取n名市民,按年齡情況進(jìn)行統(tǒng)計(jì)的頻率分布表和頻率分布直方圖如圖:
組數(shù) | 分組(單位:歲) | 頻數(shù) | 頻率 |
1 | 5 | 0.05 | |
2 | 20 | 0.20 | |
3 | a | 0.35 | |
4 | 30 | b | |
5 | 10 | 0.10 | |
合計(jì) | n | 1.00 |
(1)求出表中a,b,n的值,并補(bǔ)全頻率分布直方圖;
(2)媒體記者為了做好調(diào)查工作,決定在第2,4,5組中用分層抽樣的方法抽取6名市民進(jìn)行問卷調(diào)查,再從這6名1民中隨機(jī)抽取2名接受電視采訪,求第2組至少有一名接受電視采訪的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校醫(yī)務(wù)室欲研究晝夜溫差大小與高三患感冒人數(shù)多少之間的關(guān)系,他們統(tǒng)計(jì)了2019年9月至2020年1月每月8號(hào)的晝夜溫差情況與高三因患感冒而就診的人數(shù),得到如下資料:
日期 | 2019年9月8日 | 2019年10月8日 | 2019年11月8日 | 2019年12月8日 | 2020年1月8日 |
晝夜溫差 | 5 | 8 | 12 | 13 | 16 |
就診人數(shù) | 10 | 16 | 26 | 30 | 35 |
該醫(yī)務(wù)室確定的研究方案是先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).假設(shè)選取的是2019年9月8日與2020年1月8日的2組數(shù)據(jù).
(1)求就診人數(shù)關(guān)于晝夜溫差的線性回歸方程 (結(jié)果精確到0.01)
(2)若由(1)中所求的線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過3人,則認(rèn)為得到的線性回歸方程是理想的,試問該醫(yī)務(wù)室所得線性回歸方程是否理想?
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以3元/個(gè)的價(jià)格從面包店購進(jìn)面包,然后以5元/個(gè)的價(jià)格出售.如果當(dāng)天賣不完,剩下的面包以1元/個(gè)的價(jià)格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計(jì)資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了80個(gè)面包,以x(單位:個(gè),)表示面包的需求量,T(單位:元)表示利潤.
(1)求食堂面包需求量的平均數(shù);
(2)求T關(guān)于x的函數(shù)解析式;
(3)根據(jù)直方圖估計(jì)利潤T不少于100元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從高一年級(jí)的一次月考成績中隨機(jī)抽取了 50名學(xué)生的成績(滿分100分,且抽取的學(xué)生成績都在內(nèi)),按成績分為,,,,五組,得到如圖所示的頻率分布直方圖.
(1)用分層抽樣的方法從月考成績在內(nèi)的學(xué)生中抽取6人,求分別抽取月考成績在和內(nèi)的學(xué)生多少人;
(2)在(1)的前提下,從這6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行調(diào)查,求月考成績在內(nèi)至少有1名學(xué)生被抽到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為的四個(gè)頂點(diǎn)圍成的四邊形面積為.
(1)求的方程;
(2)過的右焦點(diǎn),且斜率不為0的直線與交于兩點(diǎn),線段的垂直平分線經(jīng)過點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高二年級(jí)的甲、乙兩個(gè)班中,需根據(jù)某次數(shù)學(xué)預(yù)賽成績選出某班的5名學(xué)生參加數(shù)學(xué)競賽決賽,已知這次預(yù)賽他們?nèi)〉玫某煽兊那o葉圖如圖所示,其中甲班5名學(xué)生成績的平均分是83,乙班5名學(xué)生成績的中位數(shù)是86.
(1)求出x,y的值,且分別求甲、乙兩個(gè)班中5名學(xué)生成績的方差、,并根據(jù)結(jié)
果,你認(rèn)為應(yīng)該選派哪一個(gè)班的學(xué)生參加決賽?
(2)從成績在85分及以上的學(xué)生中隨機(jī)抽取2名.求至少有1名來自甲班的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(請(qǐng)寫出式子在寫計(jì)算結(jié)果)有4個(gè)不同的小球,4個(gè)不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):
(1)共有多少種方法?
(2)若每個(gè)盒子不空,共有多少種不同的方法?
(3)恰有一個(gè)盒子不放球,共有多少種放法?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com