(6分)(文科只做(1),理科(1)和(2)都做)
(1)求證:不可能成等差數(shù)列 
(2)用數(shù)學(xué)歸納法證明:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

各項(xiàng)為正數(shù)的數(shù)列的前n項(xiàng)和為,且滿足:
(1)求;
(2)設(shè)函數(shù)求數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列中,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和;
(Ⅲ)(理科)若存在,使得成立,求實(shí)數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列{}是首項(xiàng)為23,公差為整數(shù)的等差數(shù)列,且前6項(xiàng)為正,從第7項(xiàng)開(kāi)始變?yōu)樨?fù)的,回答下列各問(wèn):(1)求此等差數(shù)列的公差d;(2)設(shè)前n項(xiàng)和為,求的最大值;(3)當(dāng)是正數(shù)時(shí),求n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)對(duì)于數(shù)列,定義為數(shù)列的一階差分?jǐn)?shù)列,其中,.若,且.(I)求證數(shù)列為等差數(shù)列;(Ⅱ)若),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列是公差為2的等差數(shù)列,且,,成等比數(shù)列.
(1)求的通項(xiàng)公式;
(2)令 ,記數(shù)列的前項(xiàng)和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知三個(gè)數(shù)成等差數(shù)列,其和為21,若第二個(gè)數(shù)減去1 ,第三個(gè)數(shù)加上1,則三個(gè)數(shù)成等比數(shù)列. 求原來(lái)的三個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問(wèn)題,他們?cè)谏碁┥袭?huà)點(diǎn)或用小石子來(lái)表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類,如圖2中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22,…,被稱為五角形數(shù),其中第1個(gè)五角形數(shù)記作,第2個(gè)五角形數(shù)記作,第3個(gè)五角形數(shù)記作,第4個(gè)五角形數(shù)記作,…,若按此規(guī)律繼續(xù)下去,則  ,若,則  

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)等差數(shù)列的前項(xiàng)和為,若          

查看答案和解析>>

同步練習(xí)冊(cè)答案