設變量x、y滿足約束條件
2x-y≤2
x-y≥-1
x+y≥1
,則z=2x+3y的最大值為( 。
A、18B、2C、3D、0
考點:簡單線性規(guī)劃
專題:數(shù)形結合
分析:由約束條件作出可行域,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,則目標函數(shù)的最大值可求.
解答: 解:由約束條件
2x-y≤2
x-y≥-1
x+y≥1
作出可行域如圖,

聯(lián)立
2x-y=2
x-y=-1
解得B(3,4).
由圖可知,當目標函數(shù)過B時z有最大值.
z=2×3+3×4=18.
故選:A.
點評:本題考查了簡單的線性規(guī)劃,考查了數(shù)形結合的解題思想方法,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=f(x)為定義在R上的減函數(shù),函數(shù)y=f(x-1)的圖象關于點(1,0)對稱,x,y滿足不等式f(x2-2x)+f(y2-2y)≥0,則當1≤x≤4時,
y
x
的取值范圍為( 。
A、[12,+∞)
B、[0,3]
C、[1-
2
,1+
2
]
D、(-∞,1-
2
]∪[1+
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在區(qū)間[0,10]上任取一個實數(shù)a,使得不等式2x2-ax+8≥0在(0,+∞)上恒成立的概率為( 。
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l1:ax+3y+1=0,l2:x+(a-2)y+a=0.若l1∥l2,則直線l1與l2之間的距離為( 。
A、
2
3
B、
2
2
3
C、
4
3
D、
4
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知平面α⊥平面β,α∩β=AB,C∈β,D∈β,DA⊥AB,CB⊥AB,BC=8,AB=6,AD=4,平面α有一動點P使得∠APD=∠BPC,則△PAB的面積最大值是( 。
A、24B、32C、12D、48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合M={x|x≥-1},N={x|2-x2≥0},則M∪N=( 。
A、[-
2
,+∞)
B、[-1,
2
]
C、[-1,+∞)
D、(-∞,-
2
]∪[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是定義在R上的偶函數(shù),對x∈R,都有f(x-2)=f(x+2),且當x∈[-2,0]時,f(x)=(
1
2
x-1,若在區(qū)間(-2,6]內關于x的方程f(x)-loga(x+2)=0(a>1)恰有3個不同的實根,則a的取值范圍是( 。
A、(1,2)
B、(2,+∞)
C、(1,
34
D、(
34
,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin2013°的值屬于區(qū)間( 。
A、(-
1
2
,0)
B、(-1,-
1
2
C、(
1
2
,1)
D、(0,
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
(1)求證:AB⊥PE;
(2)求二面角A-PB-E的大。

查看答案和解析>>

同步練習冊答案