如圖,PA⊥平面AC,四邊形ABCD是矩形,EF分別是AB、PD的中點.

(Ⅰ)求證:AF∥平面PCE;

(Ⅱ)若二面角PCDB45°,AD=2,CD=3,求點F到平面PCE的距離.

 

答案:
解析:

答案:(Ⅰ)取PC中點M,連結(jié)ME、MF. 

,即四邊形AFME是平行四邊形,∴AF//EM,∵AF平在PCE,∴AF∥平面PCE.

(Ⅱ)∵PA⊥平面AC,CDAD,根據(jù)三垂線定理知,CDPD  ∴∠PDA是二面角

PCDB的平面角,則∠PDA=45°……6  于是,△PAD是等腰直角三角形,

AFPD,又AFCDAF⊥面PCD.EM//AF, EM⊥面PCD.EM平面PEC,

∴面PEC⊥面PCD.在面PCD內(nèi)過FFHPCH,則FH為點F到平面PCE的距離.由已知,,

∵△PFH∽△PCD  

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點.
(1)求證:AF∥平面PCE;
(2)若二面角P-CD-B為45°,AD=2,CD=3,求點F到平面PCE的距離;
(3)在(2)的條件下,求PC與底面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點.
(Ⅰ)求證:AF∥平面PCE;
(Ⅱ)若二面角P-CD-B為45°,AD=2,CD=3,求點F到平面PCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)綜合題 題型:044

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點.

(1)求證:AF∥平面PCE;

(2)若二面角P—CD—B為45°,AD=2,CD=3,求點F到平面PCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省廣元中學(xué)2010屆高三第四次月考、文科數(shù)學(xué)試卷 題型:044

如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點.

(1)求證:AF∥平面PCE;

(2)若二面角P-CD-B為45°,AD=2,CD=3,求點F到平面PCE的距離.

查看答案和解析>>

同步練習(xí)冊答案