精英家教網 > 高中數學 > 題目詳情
選做題(請考生在第16題的三個小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點D,試求BD的長.
(2)已知曲線C的參數方程為(θ為參數),求曲線C上的點到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數,a≠b,x,y∈(0,+∞),則+,當且僅當=時上式取等號.請利用以上結論,求函數f(x)=+(x∈0,)的最小值.

【答案】分析:(1)根據勾股定理求得AB的長,再根據切割線定理解答.
(2)把極坐標方程化為直角坐標方程,出圓心(1,0)到直線x-y+1=0的距離,將此距離加上半徑即得所求.
(3))f(x)=+轉化為f(x)=+,再利用給出的不等式性質求解.
解答:解:(1)∵AC=4,BC=3,
根據勾股定理得AB=5;
根據切線長定理,BC2=BD•BA,
∴32=BD•5,
∴BD=1.8
(2)將曲線C的參數方程化為直角坐標方程得(x-1)2+y2=1,
圓心(1,0)到直線x-y+1=0的距離為d==
所求最大距離為d+r=+1.
(3)f(x)=+=+=25,
當且僅當=,x=時取等號.
點評:(1)本題考查與圓有關的線段長度求解,用到了切線長定理.應熟練掌握:1.射影定理的內容及其證明; 2.圓周角與弦切角定理的內容及其證明;3.圓冪定理的內容及其證明;4.圓內接四邊形的性質與判定.
(2)本題考查把極坐標方程化為直角坐標方程的方法,點到直線的距離公式的應用,求出圓心(1,0)到直線直線x-y+1=0的距離,是解題的關鍵.
(3)本題考查不等式性質的應用:求最值.要創(chuàng)造出滿足性質的條件,準確應用性質求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•湖南模擬)選做題(請考生在第16題的三個小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點D,試求BD的長.
(2)已知曲線C的參數方程為
x=1+cosθ
y=sinθ
(θ為參數),求曲線C上的點到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數,a≠b,x,y∈(0,+∞),則
a2
x
+
b2
y
(a+b)2
x+y
,當且僅當
a
x
=
b
y
時上式取等號.請利用以上結論,求函數f(x)=
2
x
+
9
1-2x
(x∈0,
1
2
)的最小值.

查看答案和解析>>

科目:高中數學 來源:2010年海南省高三五校聯考數學(理) 題型:解答題

選做題:請考生在第22,23,24題中任選一題做答,如果多做,則按所做的第一題記分

22.(本小題滿分10分)選修4—1幾何證明選講

如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E,OE交AD于點F。

   (I)求證:DE是⊙O的切線;

   (II)若的值.

 

 

23.(本小題滿分10分)選修4—2坐標系與參數方程

        設直角坐標系原點與極坐標極點重合, x軸正半軸與極軸重合,若已知曲線C的極坐標方程為,點F1、F2為其左、右焦點,直線l的參數方程為

   (I)求直線l的普通方程和曲線C的直角坐標方程;

   (II)求曲線C上的動點P到直線l的最大距離。

24.(本小題滿分10分)選修4—5不等式選講

        對于任意的實數恒成立,記實數M的最大值是m

   (1)求m的值;

   (2)解不等式

 

查看答案和解析>>

科目:高中數學 來源:2010年海南省高三五校聯考數學(文) 題型:選擇題

選做題:請考生在第22,23,24題中任選一題做答,如果多做,則按所做的第一題記分

22.(本小題滿分10分)選修4—1幾何證明選講

如圖,AB是⊙O的直徑,AC是弦,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E,OE交AD于點F。

   (I)求證:DE是⊙O的切線;

   (II)若的值.

 

23.(本小題滿分10分)選修4—2坐標系與參數方程

        設直角坐標系原點與極坐標極點重合, x軸正半軸與極軸重合,若已知曲線C的極坐標方程為,點F1、F2為其左、右焦點,直線l的參數方程為

   (I)求直線l的普通方程和曲線C的直角坐標方程;

   (II)求曲線C上的動點P到直線l的最大距離。

24.(本小題滿分10分)選修4—5不等式選講

        對于任意的實數恒成立,記實數M的最大值是m。

   (1)求m的值;

   (2)解不等式

 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

選做題(請考生在第16題的三個小題中任選兩題作答,如果全做,則按前兩題記分,要寫出必要的推理與演算過程)
(1)如圖,已知Rt△ABC的兩條直角邊BC,AC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點D,試求BD的長.
(2)已知曲線C的參數方程為數學公式(θ為參數),求曲線C上的點到直線x-y+1=0的距離的最大值.
(3)若a,b是正常數,a≠b,x,y∈(0,+∞),則數學公式+數學公式數學公式,當且僅當數學公式=數學公式時上式取等號.請利用以上結論,求函數f(x)=數學公式+數學公式(x∈0,數學公式)的最小值.

查看答案和解析>>

同步練習冊答案