已知
1-bi
1+2i
=a+i(a,b∈R),其中i為虛數(shù)單位,則a+b=( 。
A、-4B、4C、-10D、10
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的代數(shù)形式的乘除運(yùn)算及復(fù)數(shù)相等的性質(zhì)可求得答案.
解答: 解:∵
1-bi
1+2i
=
(1-bi)(1-2i)
(1+2i)(1-2i)
=
1-2b-(b+2)i
5
=a+i,
1-2b
5
=a,
b+2
5
=-1,
解得:b=-7,a=3.
∴a+b=-7+3=-4.
故選:A.
點(diǎn)評(píng):本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,將復(fù)數(shù)分母實(shí)數(shù)化是化簡(jiǎn)的關(guān)鍵,考查復(fù)數(shù)相等與運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y為實(shí)數(shù),且滿(mǎn)足:(x-2014)3+2013(x-2014)=-2013,(y-2014)3+2013(y-2014)=2013,則x+y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}滿(mǎn)足3a8=5am,a1>0,(Snmax=S20,則m的值為(  )
A、6B、12C、13D、26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)滿(mǎn)足f(x+1)=f(x-1),且當(dāng)x∈[0,1]時(shí),f(x)=x2,則關(guān)于x的方程f(x)=10-|x|在[-
10
3
10
3
]上根的個(gè)數(shù)是( 。
A、4個(gè)B、6個(gè)C、8個(gè)D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的圖象如圖所示,則f(0)的值為( 。
A、1
B、0
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C所對(duì)的邊的長(zhǎng)分別為a,b,c,A=60°,C=45°,a=30,則c等于( 。
A、15
2
B、30
2
C、10
6
D、15
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖的程序框圖,則輸出的S=( 。
A、9B、13C、17D、33

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是( 。
A、命題p:存在x0∈R,使得x02+x0+1<0,則¬p:任意x∈R,都有x2+x+1>0
B、在△ABC中,“sinA>sinB”是“A>B”的充要條件
C、若
a
b
=
a
c
,則
b
=
c
D、命題“若x2-2x=0,則x=2”的否命題是“若x2-2x=0,則x≠2”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).且點(diǎn)A,B的縱坐標(biāo)分別為
3
5
12
13

(1)若將點(diǎn)B沿單位圓逆時(shí)針旋轉(zhuǎn)
π
2
到達(dá)C點(diǎn),求點(diǎn)C的坐標(biāo);
(2)求tan(α+β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案