下列說法中,正確的是(  )
A、數(shù)據(jù)5,4,4,3,5,2,1的中位數(shù)是3
B、一組數(shù)據(jù)的標(biāo)準(zhǔn)差是這組數(shù)據(jù)的方差的平方
C、頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻數(shù)
D、數(shù)據(jù)2,3,4,5 的標(biāo)準(zhǔn)差是數(shù)據(jù)4,6,8,10的標(biāo)準(zhǔn)差的一半
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差
專題:概率與統(tǒng)計(jì)
分析:A求出數(shù)據(jù)5,4,4,3,5,2,1的中位數(shù)即可;
B根據(jù)數(shù)據(jù)的標(biāo)準(zhǔn)差與方差的概念即可判斷正誤;
C根據(jù)頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻率即可判斷正誤;
D根據(jù)數(shù)據(jù)2,3,4,5 與數(shù)據(jù)4,6,8,10的方差關(guān)系得出它們標(biāo)準(zhǔn)差的關(guān)系.
解答: 解:對于A,數(shù)據(jù)5,4,4,3,5,2,1的中位數(shù)是4,∴A錯(cuò)誤;
對于B,一組數(shù)據(jù)的標(biāo)準(zhǔn)差是這組數(shù)據(jù)的方差的算術(shù)平方根,∴B錯(cuò)誤;
對于C,頻率分布直方圖中各小長方形的面積等于相應(yīng)各組的頻率,∴C錯(cuò)誤;
對于D,數(shù)據(jù)2,3,4,5 的方差是數(shù)據(jù)4,6,8,10的方差的
1
4
,
∴數(shù)據(jù)2,3,4,5 的標(biāo)準(zhǔn)差是數(shù)據(jù)4,6,8,10的標(biāo)準(zhǔn)差的
1
2
,D正確.
故選:D.
點(diǎn)評:本題考查了中位數(shù)、方差與標(biāo)準(zhǔn)差以及頻率的應(yīng)用問題,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足
x-y≤2
0≤x+y≤4
0≤y≤3
,則z=3x+2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某車間甲組有10名工人,其中有4名女工人;乙組有5名工人,其中有3名女工人.現(xiàn)采用分層抽樣方法(層內(nèi)采用不放回簡單隨機(jī)抽樣)從甲、乙兩組中共抽取3名工人進(jìn)行技術(shù)考核.記ξ表示抽取的3名工人中男工人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知R上的可導(dǎo)函數(shù)f(x)滿足f′(x)≤f(x)恒成立,若f(0)>0,則
f(1)
f(0)
的最大值為( 。
A、1B、e
C、e-1D、2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某縣為“中學(xué)生知識(shí)競賽”進(jìn)行選取性測試,規(guī)定:成績大于或等于90分的右參賽資格,90分以下(不包括90分)的則被淘汰,若現(xiàn)有1000人參加測試,學(xué)生成績的頻率分別直方圖如圖:
(1)根據(jù)頻率分別直方圖,求獲得參賽資格的人數(shù)并估算這1000名學(xué)生測試的平均值
(2)若知識(shí)競賽分初賽和復(fù)賽,在初賽中每人最多有5道選題答題的機(jī)會(huì),累計(jì)大隊(duì)3題或答錯(cuò)3題即終止,答對3題者方可參加復(fù)賽,已知參賽者甲答對每一個(gè)問題的概率都相同,并且相互之間沒有影響,已知他連續(xù)兩次答錯(cuò)的概率為
1
9
,求甲在初賽中答題個(gè)數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(a-3)x+3a
logax
x<1
x≥1
是(-∞,+∞)上的減函數(shù),那么a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:sin2242°+tan2(-64°)cot45°•
1
tan2244°
+cos2782°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l經(jīng)過點(diǎn)A(1,2),B(4,2+
3
),則直線l的傾斜角是(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意復(fù)數(shù)z=x+yi(x,y∈R),i為虛數(shù)單位,則下列結(jié)論正確的是( 。
A、|z-
.
z
|=2y
B、z2=x2+y2
C、|z+
.
z
|=2|x|
D、z
.
z
=z2-y2

查看答案和解析>>

同步練習(xí)冊答案