對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對稱中心;且‘拐點(diǎn)’就是對稱中心.如“函數(shù)f(x)=x3-3x2+3x對稱中心為點(diǎn) (1,1)”請你將這一發(fā)現(xiàn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:山西省康杰中學(xué)2011-2012學(xué)年高二下學(xué)期期中考試數(shù)學(xué)理科試題 題型:022
對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)是函數(shù)y=f(x)的導(dǎo)數(shù)y=的導(dǎo)數(shù),若方程=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對稱中心;且‘拐點(diǎn)’就是對稱中心.”請你將這一發(fā)現(xiàn)為條件,函數(shù)f(x)=x3-x2+3x-,則它的對稱中心為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:044
對于三次函數(shù)f(x)=x3-3x2-3mx+4(其中m為常數(shù))存在極植,請完成下列問題.
(1)求f(x)的單調(diào)區(qū)間及極值;
(2)當(dāng)f(x)的極大值為5時(shí),求m的值;
(3)求曲線y=f(x)的切線中過原點(diǎn)的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:福建省福州八縣(市)一中2012屆高三上學(xué)期期中聯(lián)考數(shù)學(xué)文科試題 題型:022
對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)是函數(shù)y=f(x)的導(dǎo)數(shù)y=的導(dǎo)數(shù),若方程=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有‘拐點(diǎn)’;任何一個(gè)三次函數(shù)都有對稱中心;且‘拐點(diǎn)’就是對稱中心.”請你將這一發(fā)現(xiàn)為條件,函數(shù),則它的對稱中心為(________);
計(jì)算=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求f(x)的單調(diào)區(qū)間及極值;
(2)當(dāng)f(x)的極大值為5時(shí),求m的值;
(3)求曲線y=f(x)的切線中過原點(diǎn)的切線方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com