已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線
在
處的切線方程;
(Ⅱ)設(shè)函數(shù),求函數(shù)
的單調(diào)區(qū)間;
(Ⅲ)若在上存在一點(diǎn)
,使得
<
成立,求
的取值范圍.
(Ⅰ)曲線在點(diǎn)
處的切線方程為
;(Ⅱ)當(dāng)
時(shí),
所以在
上單調(diào)遞減,在
上單調(diào)遞增;②當(dāng)
時(shí),函數(shù)
在
上單調(diào)遞增.(Ⅲ)所求的范圍是:
或
.
【解析】
試題分析:(Ⅰ)當(dāng)時(shí),求曲線
在
處的切線方程,由導(dǎo)數(shù)的幾何意義可得,對(duì)函數(shù)
求導(dǎo)得
,令
,求出
,得切線斜率,由點(diǎn)斜式可寫出曲線
在
處的切線方程;(Ⅱ)設(shè)函數(shù)
,求函數(shù)
的單調(diào)區(qū)間,求函數(shù)
的單調(diào)區(qū)間,首先確定定義域
,可通過單調(diào)性的定義,或求導(dǎo)確定單調(diào)區(qū)間,由于
,含有對(duì)數(shù)函數(shù),可通過求導(dǎo)來確定單調(diào)區(qū)間,對(duì)函數(shù)
求導(dǎo)得
,由此需對(duì)參數(shù)
討論,有范圍判斷導(dǎo)數(shù)的符號(hào),從而得單調(diào)性;(Ⅲ)若在
上存在一點(diǎn)
,使得
<
成立,既不等式
<
有解,即在
上存在一點(diǎn)
,使得
,即函數(shù)
在
上的最小值小于零,結(jié)合(Ⅱ),分別討論它的最小值情況,從而可求出
的取值范圍.
試題解析:(Ⅰ)的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041204394367304314/SYS201404120440209073417240_DA.files/image010.png">,
當(dāng)時(shí),
,
,
,
,切點(diǎn)
,斜率
∴曲線在點(diǎn)
處的切線方程為
(Ⅱ),
①當(dāng)時(shí),即
時(shí),在
上
,在
上
,
所以在
上單調(diào)遞減,在
上單調(diào)遞增;
②當(dāng),即
時(shí),在
上
,所以,函數(shù)
在
上單調(diào)遞增.
(Ⅲ)在上存在一點(diǎn)
,使得
成立,即在
上存在一點(diǎn)
,使得
,即函數(shù)
在
上的最小值小于零.
由(Ⅱ)可知:①當(dāng),即
時(shí),
在
上單調(diào)遞減,
所以的最小值為
,由
可得
,
因?yàn)?img
src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041204394367304314/SYS201404120440209073417240_DA.files/image047.png">,所以;
②當(dāng),即
時(shí),
在
上單調(diào)遞增,
所以最小值為
,由
可得
;
③當(dāng),即
時(shí),可得
最小值為
,
因?yàn)?img
src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041204394367304314/SYS201404120440209073417240_DA.files/image055.png">,所以,
故 此時(shí)不存在
使
成立.
綜上可得所求的范圍是:或
.
考點(diǎn):函數(shù)與導(dǎo)數(shù),函數(shù)單調(diào)性,存在解問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
24 |
5π |
24 |
π |
24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
11π |
6 |
| ||
2 |
3 |
π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
xn+2 | xn-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
A、f(x)=2sin(
| ||||
B、f(x)=2sin(
| ||||
C、f(x)=2sin(2x-
| ||||
D、f(x)=2sin(2x+
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com