【題目】已知數(shù)列的首項a1=1,前n項和為Sn.設(shè)λ與k是常數(shù),若對一切正整數(shù)n,均有成立,則稱此數(shù)列為“λ~k”數(shù)列.
(1)若等差數(shù)列是“λ~1”數(shù)列,求λ的值;
(2)若數(shù)列是“”數(shù)列,且an>0,求數(shù)列的通項公式;
(3)對于給定的λ,是否存在三個不同的數(shù)列為“λ~3”數(shù)列,且an≥0?若存在,求λ的取值范圍;若不存在,說明理由,
【答案】(1)1
(2)
(3)
【解析】
(1)根據(jù)定義得,再根據(jù)和項與通項關(guān)系化簡得,最后根據(jù)數(shù)列不為零數(shù)列得結(jié)果;
(2)根據(jù)定義得,根據(jù)平方差公式化簡得,求得,即得;
(3)根據(jù)定義得,利用立方差公式化簡得兩個方程,再根據(jù)方程解的個數(shù)確定參數(shù)滿足的條件,解得結(jié)果
(1)
(2)
,
(3)假設(shè)存在三個不同的數(shù)列為數(shù)列.
或
或
∵對于給定的,存在三個不同的數(shù)列為數(shù)列,且
或有兩個不等的正根.
可轉(zhuǎn)化為,不妨設(shè),則有兩個不等正根,設(shè).
① 當(dāng)時,,即,此時,,滿足題意.
② 當(dāng)時,,即,此時,,此情況有兩個不等負根,不滿足題意舍去.
綜上,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對旗下的甲、乙兩個門店在1至9月份的營業(yè)額(單位:萬元)進行統(tǒng)計并得到如圖折線圖.
下面關(guān)于兩個門店營業(yè)額的分析中,錯誤的是( )
A.甲門店的營業(yè)額折線圖具有較好的對稱性,故而營業(yè)額的平均值約為32萬元
B.根據(jù)甲門店的營業(yè)額折線圖可知,該門店營業(yè)額的平均值在[20,25]內(nèi)
C.根據(jù)乙門店的營業(yè)額折線圖可知,其營業(yè)額總體是上升趨勢
D.乙門店在這9個月份中的營業(yè)額的極差為25萬元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出:堅決打贏脫貧攻堅戰(zhàn),做到精準(zhǔn)扶貧.某縣積極引導(dǎo)農(nóng)民種植一種名貴中藥材,從而大大提升了該縣村民的經(jīng)濟收入.2019年年底,該機構(gòu)從該縣種植的這種名貴藥材的農(nóng)戶中隨機抽取了100戶,統(tǒng)計了他們2019年因種植,中藥材所獲純利潤(單位:萬元)的情況(假定農(nóng)戶因種植中藥材這一項一年最多獲利11萬元),統(tǒng)計結(jié)果如下表所示:
(1)由表可以認為,該縣農(nóng)戶種植中藥材所獲純利潤Z(單位:萬元)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(每組數(shù)據(jù)取區(qū)間的中點值),近似為樣本方差.若該縣有1萬戶農(nóng)戶種植了該中藥材,試估算所獲純利潤Z在區(qū)間(1.9,8.2)的戶數(shù);
(2)為答謝廣大農(nóng)戶的積極參與,該調(diào)查機構(gòu)針對參與調(diào)查的農(nóng)戶舉行了抽獎活動,抽獎規(guī)則如下:在一箱子中放置5個除顏色外完全相同的小球,其中紅球1個,黑球4個.讓農(nóng)戶從箱子中隨機取出一個小球,若取到紅球,則抽獎結(jié)束;若取到黑球,則將黑球放回箱中,讓他繼續(xù)取球,直到取到紅球為止(取球次數(shù)不超過10次).若農(nóng)戶取到紅球,則視為中獎,獲得2000元的獎勵,若一直未取到紅球,則視為不中獎.現(xiàn)農(nóng)戶張明參加了抽獎活動,記他中獎時取球的次數(shù)為隨機變量X,他取球的次數(shù)為隨機變量Y.
①證明:為等比數(shù)列;
②求Y的數(shù)學(xué)期望.(精確到0.001)
參考數(shù)據(jù):.若隨機變量則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)突如其來的新型冠狀病毒肺炎在湖北爆發(fā),一方有難八方支援,全國各地的白衣天使走上戰(zhàn)場的第一線,某醫(yī)院抽調(diào)甲、乙兩名醫(yī)生,抽調(diào)、、三名護士支援武漢第一醫(yī)院與第二醫(yī)院,參加武漢疫情狙擊戰(zhàn)其中選一名護士與一名醫(yī)生去第一醫(yī)院,其它都在第二醫(yī)院工作,則醫(yī)生甲和護士被選在第一醫(yī)院工作的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為等差數(shù)列,為等比數(shù)列,.
(Ⅰ)求和的通項公式;
(Ⅱ)記的前項和為,求證:;
(Ⅲ)對任意的正整數(shù),設(shè)求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,其中.
(Ⅰ)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)在平面直角坐標(biāo)系中,設(shè)直線與曲線相交于,兩點.若點恰為線段的三等分點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校課外興趣小組利用假期到植物園開展社會實踐活動,研究某種植物生長情況與溫度的關(guān)系.現(xiàn)收集了該種植物月生長量y(cm)與月平均氣溫x(℃)的8組數(shù)據(jù),并制成如圖所示的散點圖.
根據(jù)收集到的數(shù)據(jù),計算得到如下值:
18 | 12.325 | 224.04 | 235.96 |
(1)求出y關(guān)于x的線性回歸方程(最終結(jié)果的系數(shù)精確到0.01),并求溫度為28℃時月生長量y的預(yù)報值;
(2)根據(jù)y關(guān)于x的回歸方程,得到殘差圖如圖所示,分析該回歸方程的擬合效果.
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車又稱為小黃車,近年來逐漸走進了人們的生活,也成為減少空氣污染,緩解城市交通壓力的一種重要手段.為調(diào)查某地區(qū)居民對共享單車的使用情況,從該地區(qū)居民中按年齡用隨機抽樣的方式隨機抽取了人進行問卷調(diào)查,得到這人對共享單車的評價得分統(tǒng)計填入莖葉圖,如下所示(滿分分):
(1)找出居民問卷得分的眾數(shù)和中位數(shù);
(2)請計算這位居民問卷的平均得分;
(3)若在成績?yōu)?/span>分的居民中隨機抽取人,求恰有人成績超過分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求曲線在處的切線方程,并證明:.
(2)當(dāng)時,方程有兩個不同的實數(shù)根,證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com