求數(shù)列0,1,1,2,2,3,…的一個通項公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設向量
a
=(x,2),
b
=(x+n,2x-1) (n∈N+)
,函數(shù)y=
a
b
在[0,1]上的最小值與最大值的和為an,又數(shù)列{bn}滿足:nb1+(n-1)b2+…+bn=(
9
10
)n-1+(
9
10
)n-2+…+(
9
10
)+1

(1)求證:an=n+1;
(2)求bn的表達式;
(3)cn=-an•bn,試問數(shù)列{cn}中,是否存在正整數(shù)k,使得對于任意的正整數(shù)n,都有cn≤ck成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的單調(diào)函數(shù)y=f(x),當x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y),
(1)求f(0),并寫出適合條件的函數(shù)f(x)的一個解析式;
(2)數(shù)列{an}滿足a1=f(0)且f(an+1)=
1
f(-2-an)
(n∈N+)

①求通項公式an的表達式;
②令bn=(
1
2
)an,Sn=b1+b2+…+bnTn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,試比較Sn
4
3
Tn
的大小,并加以證明;
③當a>1時,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(log a+1x-log ax+1)
對于不小于2的正整數(shù)n恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an},{bn}中,a1=a,b1=b,
an=-2an-1+4bn-1
bn=-5an-1+7bn-1
,(n∈N,n≥2).請按照要求完成下列各題,并將答案填在答題紙的指定位置上.
(1)可考慮利用算法來求am,bm的值,其中m為給定的數(shù)據(jù)(m≥2,m∈N).右圖算法中,虛線框中所缺的流程,可以為下面A、B、C、D中的
ACD
ACD

(請?zhí)畛鋈看鸢福?BR>A、B、
C、D、

(2)我們可證明當a≠b,5a≠4b時,{an-bn}及{5an-4bn}均為等比數(shù)列,請按答紙題要求,完成一個問題證明,并填空.
證明:{an-bn}是等比數(shù)列,過程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1
所以{an-bn}是以a1-b1=a-b≠0為首項,以
3
3
為公比的等比數(shù)列;
同理{5an-4bn}是以5a1-4b1=5a-4b≠0為首項,以
2
2
為公比的等比數(shù)列
(3)若將an,bn寫成列向量形式,則存在矩陣A,使
an
bn
=A
an-1
bn-1
=A(A
an-2
bn-2
)=A2
an-2
bn-2
=…=An-1
a1
b1
,請回答下面問題:
①寫出矩陣A=
-24
-57
-24
-57
;  ②若矩陣Bn=A+A2+A3+…+An,矩陣Cn=PBnQ,其中矩陣Cn只有一個元素,且該元素為Bn中所有元素的和,請寫出滿足要求的一組P,Q:
P=
1 
1 
,Q=
1
1
P=
1 
1 
,Q=
1
1
; ③矩陣Cn中的唯一元素是
2n+2-4
2n+2-4

計算過程如下:

查看答案和解析>>

科目:高中數(shù)學 來源:高三數(shù)學教學與測試 題型:044

求數(shù)列0,1,1,2,2,3,3,4,4,…的前n項和

查看答案和解析>>

同步練習冊答案