已知:baca,且a、b、c方向相同,且均為非零向量.求證:b·c

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
+
b
+
c
=
0
,|
a
|=3,|
b
|=5,|
c
|=7

(1)求
a
b
的夾角θ的余弦值;
(2)求實(shí)數(shù)k,使k
a
+
b
a
-2
b
垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意的a、b∈R,滿足f(ab)=af(b)+bf(a),f(2)=2,an=
f(2n)
n
(n∈N*),bn=
f(2n)
2n
(n∈N*).考查下列結(jié)論:①f(0)=f(1);②f(x)為偶函數(shù);③數(shù)列{an}為等比數(shù)列;④{bn}為等差數(shù)列.其中正確的是(  )
A、①②③B、①③④
C、③④D、①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(1,-2),
b
=(2,1),
c
=(-4,-2),則下列說(shuō)法中錯(cuò)誤的是( 。
A、
c
b
B、
a
b
C、對(duì)同一平面內(nèi)的任意向量
d
,都存在一對(duì)實(shí)數(shù)k1,k2,使得
d
=k1
b
+k2
c
D、向量
c
與向量
a
-
b
的夾角為45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間向量
a
=(a1,a2,a3),
b
=(b1,b2,b3),定義兩個(gè)空間向量
a
b
之間的距離為d(
a
,
b
)=
3
i=1
|bi-ai|.
(1)若
a
=(1,2,3),
b
=(4,1,1),
c
=(
11
2
,
1
2
,0),證明:d(
a
,
b
)+d(
b
c
)=d(
a
,
c

(2)已知
c
=(c1,c2,c3
    ①證明:若?λ>0,使
b
-
a
=λ(
c
-
b
),則d(
a
,
b
)+d(
a
,
c
)=d(
a
c
).
    ②若d(
a
,
b
)+d(
b
,
c
)=d(
a
,
c
),是否一定?λ>0,使
b
-
a
=λ(
c
-
b
)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案