在平行六面體中,M是底面ABCD中心,N在側(cè)面BCC1B1的對角線BC1
3
4
分點且靠近C1,若
MN
AB
AD
AA1
,則α+β+γ=
 
考點:平面向量的基本定理及其意義
專題:空間向量及應(yīng)用
分析:利用向量的三角形法則即可得出.
解答: 解:如圖所示,
MN
=
MB
+
BN
,
MB
=
1
2
DB
,
DB
=
DA
+
AB
,
BN
=
3
4
BC1
,
BC1
=
BC
+
CN1
=
AD
+
AA1
,
MN
=
1
2
(
DA
+
AB
)
+
3
4
(
AD
+
AA1
)

=
1
4
AD
+
1
2
AB
+
3
4
AA1

MN
AB
AD
AA1
比較,
可得α=
1
4
β=
1
2
,γ=
3
4
,
∴α+β+γ=
3
2

故答案為:
3
2
點評:本題考查了向量的三角形法則、共線向量定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),O為坐標(biāo)原點,P,Q為橢圓上兩動點,且OP⊥OQ.求:
(1)
1
|OP|2
+
1
|OQ|2

(2)|OP|2+|OQ|2的最大值;
(3)S△OPQ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有人收集了春節(jié)期間平均氣溫x(℃)與某取暖商品銷售額y(萬元)的有關(guān)數(shù)據(jù)(x,y)分別為:(-2,20),(-3,23),(-5,27),(-6,30),根據(jù)以上數(shù)據(jù),用線性回歸的方法,求得銷售額y與平均氣溫x之間線性回歸方程y=bx+a的系數(shù)b=-2.4,則預(yù)測平均氣溫為-8℃時該商品的銷售額為
 
萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程lnx+2x-8=0的根的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程|ax|=x+a(a>0)有兩個解,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程2x2+x3=2的解的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
c
是空間的一個單位正交基底,向量
a
+
b
a
-
b
,
c
是空間另一個基底,若向量
p
在基底
a
,
b
,
c
下的坐標(biāo)為(1,2,3)則
p
在基底
a
+
b
,
a
-
b
,
c
下的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=4,|
b
|=8,
a
b
的夾角為120°,則|2
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知映射f:A→B,其中集合A={-9,-3,-1,1,3,9},集合B中的元素都是A中的元素在映射f下的象,且對于任意x∈A,在B中和它對應(yīng)的元素是log3|x|,則集合B為( 。
A、{1,2,3}
B、{0,1,2}
C、{-2,-1,0,1,2}
D、{1,2}

查看答案和解析>>

同步練習(xí)冊答案