如圖:ABCD中,E是AD中點(diǎn),BE∩AC=F,
AF
AC
,求λ的值.
考點(diǎn):向量在幾何中的應(yīng)用
專題:平面向量及應(yīng)用
分析:選定基底,用基底把向量AF,向量BF分別用基底表示出來(lái),再利用A,F(xiàn),C三點(diǎn)共線,B,E,F(xiàn)三點(diǎn)共線轉(zhuǎn)化為向量共線,列出方程組解之即可.
解答: 解:設(shè)
AB
=
a
,
AD
=
b
EF
=M
EB

AF
AC
=λ(
a
+
b
)=λ
a
b

AF
=
AE
+
EF
=
AE
+M
EB
=
1
2
b
+M(
a
-
1
2
b
)=M
a
+
1
2
(1-M)
b

M=λ
1
2
(1-M)=λ
λ=
1
3
點(diǎn)評(píng):利用平面向量基本定理解決幾何問(wèn)題,一般是先選定基底,然后將題目給的共線、垂直、三角形等條件轉(zhuǎn)化為向量條件,再結(jié)合向量的基本運(yùn)算列出方程或方程組求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線E:
x2
a2
-
y2
b2
=1(b≥
2
a>0)的左、右焦點(diǎn)分別為F1、F2,其上的任意一點(diǎn)P,滿足
PF1
PF2
≤2a2,過(guò)F1作垂直于雙曲線實(shí)軸的弦長(zhǎng)為8.求雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ACB中,已知∠A=
π
4
,|BC|=2,設(shè)∠ACB=θ,θ∈(
π
2
,
4
).
(I)用θ表示|CA|;
(Ⅱ)求f(θ)=
CA
CB
的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,4),設(shè)
a
=
AB
,
b
=
AC
,
(1)求
a
b
夾角的余弦值;
(2)設(shè)|
c
|=3,
c
BC
,求
c
的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x為一個(gè)三角形內(nèi)角,則y=sinx+cosx的值域?yàn)椋ā 。?/div>
A、(-1,1)
B、(1,
2
]
C、(-1,
2
]
D、(0,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
a2
+
y2
2
=1與雙曲線
x2
3
-y2
=1有公共的焦點(diǎn)F1,F(xiàn)2,P是兩曲線的一個(gè)交點(diǎn),則cos∠F1PF2=( 。
A、
1
3
B、
1
4
C、
2
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都是2,M是BC邊的中點(diǎn),在側(cè)棱CC1上是否存在點(diǎn)N,使異面直線AB1與MN所成的角為90°?如果存在,請(qǐng)指出
CN
CC1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,A′A=AD=1,AB=
2
,求直線A′C與平面ABCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+a2在x=1時(shí)有極值10,
(1)求實(shí)數(shù)a,b的值;
(2)若方程f(x)=m在區(qū)間[-1,2]內(nèi)有解,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案