精英家教網 > 高中數學 > 題目詳情
(2011•浙江)如圖,在三棱錐P﹣ABC中,AB=AC,D為BC的中點,PO⊥平面ABC,垂足O落在線段AD上,已知BC=8,PO=4,AO=3,OD=2
(1)證明:AP⊥BC;
(2)在線段AP上是否存在點M,使得二面角A﹣MC﹣β為直二面角?若存在,求出AM的長;若不存在,請說明理由.
(1)見解析    (2)存在,3
以O為原點,以AD方向為Y軸正方向,以射線OP的方向為Z軸正方向,建立空間坐標系,
則O(0,0,0),A(0,﹣3,0),B(4,2,0),C(﹣4,2,0),P(0,0,4)
(1)則=(0,3,4),=(﹣8,0,0)
由此可得=0

即AP⊥BC
(2)設,λ≠1,則=λ(0,﹣3,﹣4)
=+==(﹣4,﹣2,4)+λ(0,﹣3,﹣4)
=(﹣4,5,0),=(﹣8,0,0)
設平面BMC的法向量=(a,b,c)


令b=1,則=(0,1,
平面APC的法向量=(x,y,z)


令x=5
=(5,4,﹣3)
=0
得4﹣3=0
解得λ=
故AM=3
綜上所述,存在點M符合題意,此時AM=3
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,已知正三棱柱ABC-A1B1C1的底面邊長為8,側棱長為6,D為AC中點。

(1)求證:直線AB1∥平面C1DB;
(2)求異面直線AB1與BC1所成角的余弦值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,,是正三角形,平面平面
(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在正方體中,,的中點,的中點.
(1)求證:平面平面;
(2)求證:平面
(3)設為正方體棱上一點,給出滿足條件的點的個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在棱長為2的正方體ABCD-A1B1C1D1中,E為棱CC1的中點。

(1)求證:BD⊥AE;
(2)求點A到平面BDE的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是兩條不同直線, 是三個不同平面,則下列正確的是( )
A.若,則
B.若,則
C.若,則
D.若,則

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在下列關于直線與平面的命題中,正確的是(      )
A.若,則B.若,則
C.若,則D.若,且,則

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面AC,BC邊上存在點Q,使得PQ⊥QD,則實數a的取值范圍是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知m和n是兩條不同的直線,α和β是兩個不重合的平面,那么下面給出的條件中一定能推出m⊥β的是( 。
A.α⊥β,且m?αB.m∥n,且n⊥β
C.α⊥β,且m∥αD.m⊥n,且n∥β

查看答案和解析>>

同步練習冊答案