如下圖,在海岸A處,發(fā)現(xiàn)北偏東45°方向,距A處為(-1)km的B處有一艘走私船,在A處北偏西75°方向且距A為2km的C處的緝私船奉命以10km/h的速度追緝走私船。此時走私船正以10km/h的速度從B處向北偏東30°方向逃竄,則緝私船沿什么方向能最快追上走私船?并求出所需要的時間。
解:設(shè)緝私船追上走私船所用時間為th,則BD=10tkm,CD=10tkm,在△ABC中,由余弦定理知:
 

(km)

∴∠ABC=45°
又∵∠CBD=120°

,km


答:緝私船向北偏東60°方向,只需便能追上走私船。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

如下圖,在海岸A處,發(fā)現(xiàn)北偏東45°方向,距A為的B處有一艘走私船,在A處北偏西75°方向,距A為2 n mile的C處的緝私船奉命以的速度追截走私船,此時走私船正以10 n mile/h的速度從B處向北偏東30°方向逃竄,問緝私船沿什么方向能最快追上走私船,并求出所需要的時間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

如下圖,在海岸A處,發(fā)現(xiàn)北偏東45°方向,距AB處有一艘走私船,在A處北偏西75°方向,距A2 n mileC處的緝私船奉命以的速度追截走私船,此時走私船正以10 n mile/h的速度從B處向北偏東30°方向逃竄,問緝私船沿什么方向能最快追上走私船,并求出所需要的時間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如下圖,為了測量正在海面勻速行駛的某航船的速度,在海岸上選取距離1千米的兩個觀察點C、D,在某天10:00觀察到該航船在A處,此時測得∠ADC=30°,2分鐘后該船行駛至B處,此時測得∠ACB=60°,∠BCD=45°,∠ADB=60°,則船速為         (千米/分鐘).

查看答案和解析>>

同步練習(xí)冊答案