已知函數(shù),其中為使能在時(shí)取得最大值的最小正整數(shù).
(1)求的值;
(2)設(shè)的三邊長、滿足,且邊所對(duì)的角的取值集合為,當(dāng)時(shí),求的值域.
(1);(2)當(dāng)時(shí),求的值域.

試題分析:(1)先利用二倍角公式以及輔助角公式將函數(shù)的解析式化為,然后利用條件“為使能在時(shí)取得最大值的最小正整數(shù)”這個(gè)條件先求出的表達(dá)式,然后再確定的值;(2)先利用余弦定理與基本不等式確定集合,然后根據(jù)確定的取值范圍,最后結(jié)合正弦曲線求出的值域.
試題解析:(1),依題意有
  的最小正整數(shù)值為2
                                                    5分
(2) 又 
 即
     
                                               8分
  

                                  10分

故函數(shù)的值域是                              12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

中,角所對(duì)的邊為,且滿足
(Ⅰ)求角的值;
(Ⅱ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

中,分別為角所對(duì)的邊,向量, ,且垂直.
(Ⅰ)確定角的大小;
(Ⅱ)若的平分線于點(diǎn),且,設(shè),試確定關(guān)于的函數(shù)式,并求邊長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某市準(zhǔn)備在一個(gè)湖泊的一側(cè)修建一條直路,另一側(cè)修建一條觀光大道,它的前一段是以為頂點(diǎn),軸為對(duì)稱軸,開口向右的拋物線的一部分,后一段是函數(shù),時(shí)的圖象,圖象的最高點(diǎn)為,,垂足為.

(1)求函數(shù)的解析式;
(2)若在湖泊內(nèi)修建如圖所示的矩形水上樂園,問:點(diǎn)落在曲線上何處時(shí),水上樂園的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)若,求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

中,角所對(duì)的邊分別為,已知,
(Ⅰ)求的大。
(Ⅱ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知角的始邊與軸的非負(fù)半軸重合,終邊過點(diǎn),則可以是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的值域?yàn)椋?nbsp;   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知方程上有兩個(gè)不同的解,則下列結(jié)論正確的是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案