已知函數(shù)=,=,若曲線和曲線都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線.
(Ⅰ)求,,,的值;
(Ⅱ)若≥-2時(shí),,求的取值范圍.
(Ⅰ); (Ⅱ)的取值范圍為[1,].

試題分析:(Ⅰ)先由過(guò)點(diǎn)得出,再求在點(diǎn)導(dǎo)數(shù),由導(dǎo)數(shù)幾何意義知,從而解得;
(Ⅱ)設(shè)==()=, 由題設(shè)可得≥0,即, 令=0得,=,="-2," 對(duì)分3中情況討論得出結(jié)果.
試題解析:(Ⅰ)由已知得,
=,=,∴=4,=2,=2,="2;"  
(Ⅱ)由(Ⅰ)知,,, 設(shè)函數(shù)
==(),==, 由題設(shè)可得≥0,即, 令=0得,=,="-2,"
(1)若,則-2<≤0,∴當(dāng)時(shí),<0,當(dāng)時(shí),>0,即單調(diào)遞減,在單調(diào)遞增,故=取最小值,而==≥0, ∴當(dāng)≥-2時(shí),≥0,即恒成立,
(2)若,則=, ∴當(dāng)≥-2時(shí),≥0,∴在(-2,+∞)單調(diào)遞增,而="0," ∴當(dāng)≥-2時(shí),≥0,即恒成立,
(3)若,則==<0, ∴當(dāng)≥-2時(shí),不可能恒成立,
綜上所述,的取值范圍為[1,].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),,其中為常數(shù),,函數(shù)的圖像在它們與坐標(biāo)軸交點(diǎn)處的切線分別為、,且.
(1)求常數(shù)的值及、的方程;
(2)求證:對(duì)于函數(shù)公共定義域內(nèi)的任意實(shí)數(shù),有;
(3)若存在使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)設(shè)函數(shù),
(1)求的周期和對(duì)稱中心;
(2)求上值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)處取得極值.
(1)求實(shí)數(shù)的值;
(2)若關(guān)于的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)若,使成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)是自然對(duì)數(shù)的底數(shù)).
(1)若曲線處的切線也是拋物線的切線,求的值;
(2)當(dāng)時(shí),是否存在,使曲線在點(diǎn)處的切線斜率與 在
上的最小值相等?若存在,求符合條件的的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)為常數(shù)).
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)若,且對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知處取得極值。
(Ⅰ)證明:;
(Ⅱ)是否存在實(shí)數(shù),使得對(duì)任意?若存在,求的所有值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

求形如的函數(shù)的導(dǎo)數(shù),我們常采用以下做法:先兩邊同取自然對(duì)數(shù)得:,再兩邊同時(shí)求導(dǎo)得,于是得到:,運(yùn)用此方法求得函數(shù)的一個(gè)單調(diào)遞增區(qū)間是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)處取得極值.
(1)求、的值;(2)求的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案