設函數(shù)f(x)對任意x,y滿足f(x+y)=f(x)+f(y),且f(2)=4,則f(-1)的值為(  )
A、-3B、-2C、2D、3
考點:抽象函數(shù)及其應用
專題:函數(shù)的性質(zhì)及應用
分析:通過賦值法求得f(0)=0,f(-x)=-f(x),說明f(x)為奇函數(shù),通過f(1+1)=f(1)+f(1)=4,即可求得f(1),從而可求得f(-1).
解答: 解:∵f(x)對任意x、y滿足f(x+y)=f(x)+f(y),
∴令x=y=0得:f(0)=f(0)+f(0),
∴f(0)=0;
再令y=-x代入得:f(0)=f(x)+f(-x)=0,
∴f(-x)=-f(x),
∴f(x)為奇函數(shù).
∵f(2)=f(1+1)=f(1)+f(1)=4,
∴f(1)=2,又f(x)為奇函數(shù),
∴f(-1)=-f(1)=-2.
故選:B
點評:本題考查抽象函數(shù)及其應用,奇函數(shù)的性質(zhì),賦值法的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的各項均為正數(shù),它的前n項和為Sn,點(an,Sn )在函數(shù)y=
1
8
x2+
1
2
x+
1
2
的圖象上,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
b
均為單位向量,其夾角為θ,如果|
a
-
b
|>1,則θ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

臺風中心從A地以20km/h的速度向東偏北45°方向移動,離臺風中心30km內(nèi)的地區(qū)為危險區(qū),城市B在A的正東40km處,B城市處于危險區(qū)內(nèi)的時間為( 。
A、0.5hB、1h
C、1.5hD、2h

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=a-bsin4x(b>0)的最大值是5,最小值是1,則a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(8,k)(k∈R),
b
=(1,3),
c
=(3,-2),且(3
a
+
b
)⊥
c
,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
b
,<
a
c
>=60°,<
b
c
>=30°,且|
a
|=1,|
b
|=2,|
c
|=3,則|
a
+
b
+
c
|2=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)是周期為2的奇函數(shù),當0<x<1時,f(x)=sinx+x,則1<x<2時,f(x)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
4-x+3x
2
-
|4-x-3x|
2
-m有兩個不同的零點,則m的取值范圍是(  )
A、(-∞,3)
B、[3,+∞)
C、(0,3)
D、(3,+∞)

查看答案和解析>>

同步練習冊答案