【題目】如圖所示的多面體是由一個(gè)直平行六面體被平面AEFG所截后得到的,其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
(1)求證:BD⊥平面ADG;
(2)求直線GB與平面AEFG所成角的正弦值.
【答案】(1)證明:在△BAD中,∵AB=2AD=2,∠BAD=60°.
由余弦定理BD2=AD2+AB2﹣2ABADcos60°, ,
∵AB2=AD2+DB2,
∴AD⊥DB,
在直平行六面體中,GD⊥平面ABCD,DB平面ABCD,∴GD⊥DB,
又AD∩GD=D,
∴BD⊥平面ADG.
(2)解:如圖以D為原點(diǎn)建立空間直角坐標(biāo)系D﹣xyz,
∵∠BAE=∠GAD=45°,AB=2AD=2,
∴A(1,0,0), , ,G(0,0,1), , , ,
設(shè)平面AEFG的法向量 , 令x=1,得 ,z=1,
∴ ,
設(shè)直線GB和平面AEFG的夾角為θ,
∴ ,
所以直線GB與平面AEFG所成角的正弦值為 .
【解析】(1)求一條直線垂直于一個(gè)平面,證明這條直線與這個(gè)平面內(nèi)相交的兩條直線垂直即可;(2)先根據(jù)圖形特點(diǎn)建立空間直角坐標(biāo)系,求得平面AEFG的法向量,最終求得直線GB與平面AEFG所成角的正弦值.
【考點(diǎn)精析】通過靈活運(yùn)用直線與平面垂直的判定和空間角的異面直線所成的角,掌握一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想;已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是( 。
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,焦點(diǎn)在x軸的橢圓,離心率e= ,且過點(diǎn)A(﹣2,1),由橢圓上異于點(diǎn)A的P點(diǎn)發(fā)出的光線射到A點(diǎn)處被直線y=1反射后交橢圓于Q點(diǎn)(Q點(diǎn)與P點(diǎn)不重合).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)求證:直線PQ的斜率為定值;
(3)求△OPQ的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分別是棱A1B1、AB、A1D1的中點(diǎn).
(Ⅰ)求證:GE⊥平面FCC1;
(Ⅱ)求二面角B﹣FC1﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1和F2為雙曲線 ﹣ =1(a>0,b>0)的兩個(gè)焦點(diǎn),若F1 , F2 , P(0,2b)是正三角形的三個(gè)頂點(diǎn),則雙曲線的漸近線方程是( )
A.y=± x
B.y=± x
C.y=± x
D.y=± x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱柱ABC﹣A1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.
(Ⅰ)求證:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直線上的一點(diǎn),若二面角A﹣B1E﹣B的正弦值為 ,求CE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,已知∠A= ,∠B= ,AB=6.在AB邊上取點(diǎn)E使得BE=1,連結(jié)EC,ED,若∠CED= ,EC= .則CD= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=m,其前n項(xiàng)和為Sn , 且滿足Sn+Sn+1=3n2+2n,若對n∈N+ , an<an+1恒成立,則m的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com