【題目】某省兩相近重要城市之間人員交流頻繁,為了緩解交通壓力,特修一條專(zhuān)用鐵路,用一列火車(chē)作為交通車(chē),已知該車(chē)每次拖4節(jié)車(chē)廂,一日能來(lái)回16次,如果每次拖7節(jié)車(chē)廂,則每日能來(lái)回10次.

(1)若每日來(lái)回的次數(shù)是車(chē)頭每次拖掛車(chē)廂節(jié)數(shù)的一次函數(shù),求此一次函數(shù)解析式:

(2)在(1)的條件下,每節(jié)車(chē)廂能載乘客110人.問(wèn)這列火車(chē)每天來(lái)回多少次才能使運(yùn)營(yíng)人數(shù)最多?并求出每天最多運(yùn)營(yíng)人數(shù)。

【答案】(1)(2)這列火車(chē)每天來(lái)回12次,才能使運(yùn)營(yíng)人數(shù)最多。每天最多運(yùn)營(yíng)人數(shù)為7920.

【解析】試題分析:(1)先設(shè)出一次函數(shù)的解析式,再代入,利用待定系數(shù)法進(jìn)行求解;(2)先設(shè)出有關(guān)未知量,結(jié)合(1)結(jié)論,得到每天運(yùn)營(yíng)總?cè)藬?shù)關(guān)于車(chē)廂節(jié)數(shù)的函數(shù),再利用二次函數(shù)求其最值.

試題解析:(1)設(shè)每天往返y,每次掛x節(jié)車(chē)廂,由題意y=kx+b,當(dāng)x=4時(shí),y=16,當(dāng)x=7時(shí),y=10,

得到16=4k+b,10=7k+b.解得:k=-2,b=24,∴y=-2x+24 4分)

設(shè)每天往返y,每次掛x節(jié)車(chē)廂,由題意知,每天掛車(chē)廂最多時(shí),運(yùn)營(yíng)人數(shù)最多,設(shè)每天運(yùn)營(yíng)S節(jié)車(chē)

,S=xy=x-2x+24=-2x2+24x=-2x-62+72,

所以當(dāng)x=6時(shí),Smax=72,此時(shí)y=12,則每日最多運(yùn)營(yíng)人數(shù)為110×72="7" 920(人).

:這列火車(chē)每天往返12,才能使運(yùn)營(yíng)人數(shù)最多,每天最多運(yùn)營(yíng)人數(shù)為7 920人.(10分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是數(shù)列的前項(xiàng)和,且滿(mǎn)足,等差數(shù)列的前項(xiàng)和為,且, .

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若數(shù)列的通項(xiàng)公式為,問(wèn)是否存在互不相等的正整數(shù), , 使得 , 成等差數(shù)列,且 , , 成等比數(shù)列?若存在,求出 , ;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕的成本為50元,然后以每個(gè)100元的價(jià)格出售,如果當(dāng)天賣(mài)不完,剩下的蛋糕作垃圾處理現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個(gè)生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量單位:個(gè),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率

1若蛋糕店一天制作17個(gè)生日蛋糕,

求當(dāng)天的利潤(rùn)單位:元關(guān)于當(dāng)天需求量單位:個(gè),的函數(shù)解析式;

在當(dāng)天的利潤(rùn)不低于750元的條件下,求當(dāng)天需求量不低于18個(gè)的概率

2若蛋糕店計(jì)劃一天制作16個(gè)或17個(gè)生日蛋糕,請(qǐng)你以蛋糕店一天利潤(rùn)的期望值為決定依據(jù),判斷應(yīng)該制作16個(gè)是17個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)上有一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作直線(xiàn)垂直于軸,動(dòng)點(diǎn)上,且滿(mǎn)足為坐標(biāo)原點(diǎn)),記點(diǎn)的軌跡為.

(I)求曲線(xiàn)的方程;

(II)若直線(xiàn)是曲線(xiàn)的一條切線(xiàn),當(dāng)點(diǎn)到直線(xiàn)的距離最短時(shí),求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在邊長(zhǎng)為1的等邊三角形中,分別是,上的點(diǎn),的中點(diǎn),交于點(diǎn)沿折起,得到如圖2所示的三棱錐,其中.

1求證:平面平面

2,上的中點(diǎn),中點(diǎn),求異面直線(xiàn)所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是( )

A. 空間不同的三點(diǎn)確定一個(gè)平面

B. 空間兩兩相交的三條直線(xiàn)確定一個(gè)平面

C. 空間有三個(gè)角為直角的四邊形一定是平面圖形

D. 和同一條直線(xiàn)相交的三條平行直線(xiàn)一定在同一平面內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓和定點(diǎn),由圓外一點(diǎn)向圓引切線(xiàn),切點(diǎn)為,且滿(mǎn)足

(1)求實(shí)數(shù)間滿(mǎn)足的等量關(guān)系;

(2)若以為圓心的圓與圓有公共點(diǎn),試求圓的半徑最小時(shí)圓的方程;

(3)當(dāng)點(diǎn)的位置發(fā)生變化時(shí),直線(xiàn)是否過(guò)定點(diǎn),如果是,求出定點(diǎn)坐標(biāo),如果不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(A)已知平行四邊形中, , , 的中點(diǎn), .

(1)求的長(zhǎng);

(2)設(shè) 為線(xiàn)段、上的動(dòng)點(diǎn),且,求的最小值.

(B)已知平行四邊形中, , 的中點(diǎn), .

(1)求的長(zhǎng);

(2)設(shè)為線(xiàn)段上的動(dòng)點(diǎn)(不包含端點(diǎn)),求的最小值,以及此時(shí)點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)的最小值;

2)若對(duì)任意x∈[1,+),fx>0恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案