【題目】某省兩相近重要城市之間人員交流頻繁,為了緩解交通壓力,特修一條專(zhuān)用鐵路,用一列火車(chē)作為交通車(chē),已知該車(chē)每次拖4節(jié)車(chē)廂,一日能來(lái)回16次,如果每次拖7節(jié)車(chē)廂,則每日能來(lái)回10次.
(1)若每日來(lái)回的次數(shù)是車(chē)頭每次拖掛車(chē)廂節(jié)數(shù)的一次函數(shù),求此一次函數(shù)解析式:
(2)在(1)的條件下,每節(jié)車(chē)廂能載乘客110人.問(wèn)這列火車(chē)每天來(lái)回多少次才能使運(yùn)營(yíng)人數(shù)最多?并求出每天最多運(yùn)營(yíng)人數(shù)。
【答案】(1)(2)這列火車(chē)每天來(lái)回12次,才能使運(yùn)營(yíng)人數(shù)最多。每天最多運(yùn)營(yíng)人數(shù)為7920.
【解析】試題分析:(1)先設(shè)出一次函數(shù)的解析式,再代入,利用待定系數(shù)法進(jìn)行求解;(2)先設(shè)出有關(guān)未知量,結(jié)合(1)結(jié)論,得到每天運(yùn)營(yíng)總?cè)藬?shù)關(guān)于車(chē)廂節(jié)數(shù)的函數(shù),再利用二次函數(shù)求其最值.
試題解析:(1)設(shè)每天往返y次,每次掛x節(jié)車(chē)廂,由題意y=kx+b,當(dāng)x=4時(shí),y=16,當(dāng)x=7時(shí),y=10,
得到16=4k+b,10=7k+b.解得:k=-2,b=24,∴y=-2x+24 (4分)
設(shè)每天往返y次,每次掛x節(jié)車(chē)廂,由題意知,每天掛車(chē)廂最多時(shí),運(yùn)營(yíng)人數(shù)最多,設(shè)每天運(yùn)營(yíng)S節(jié)車(chē)
廂,則S=xy=x(-2x+24)=-2x2+24x=-2(x-6)2+72,
所以當(dāng)x=6時(shí),Smax=72,此時(shí)y=12,則每日最多運(yùn)營(yíng)人數(shù)為110×72="7" 920(人).
答:這列火車(chē)每天往返12次,才能使運(yùn)營(yíng)人數(shù)最多,每天最多運(yùn)營(yíng)人數(shù)為7 920人.(10分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是數(shù)列的前項(xiàng)和,且滿(mǎn)足,等差數(shù)列的前項(xiàng)和為,且, .
(Ⅰ)求數(shù)列與的通項(xiàng)公式;
(Ⅱ)若數(shù)列的通項(xiàng)公式為,問(wèn)是否存在互不相等的正整數(shù), , 使得, , 成等差數(shù)列,且 , , 成等比數(shù)列?若存在,求出, , ;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕的成本為50元,然后以每個(gè)100元的價(jià)格出售,如果當(dāng)天賣(mài)不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個(gè)生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個(gè)),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.
(1)若蛋糕店一天制作17個(gè)生日蛋糕,
①求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:個(gè),)的函數(shù)解析式;
②在當(dāng)天的利潤(rùn)不低于750元的條件下,求當(dāng)天需求量不低于18個(gè)的概率.
(2)若蛋糕店計(jì)劃一天制作16個(gè)或17個(gè)生日蛋糕,請(qǐng)你以蛋糕店一天利潤(rùn)的期望值為決定依據(jù),判斷應(yīng)該制作16個(gè)是17個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)上有一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作直線(xiàn)垂直于軸,動(dòng)點(diǎn)在上,且滿(mǎn)足(為坐標(biāo)原點(diǎn)),記點(diǎn)的軌跡為.
(I)求曲線(xiàn)的方程;
(II)若直線(xiàn)是曲線(xiàn)的一條切線(xiàn),當(dāng)點(diǎn)到直線(xiàn)的距離最短時(shí),求直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在邊長(zhǎng)為1的等邊三角形中,分別是,上的點(diǎn),,是的中點(diǎn),與交于點(diǎn),沿折起,得到如圖2所示的三棱錐,其中.
(1)求證:平面平面
(2)若為,上的中點(diǎn),為中點(diǎn),求異面直線(xiàn)與所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A. 空間不同的三點(diǎn)確定一個(gè)平面
B. 空間兩兩相交的三條直線(xiàn)確定一個(gè)平面
C. 空間有三個(gè)角為直角的四邊形一定是平面圖形
D. 和同一條直線(xiàn)相交的三條平行直線(xiàn)一定在同一平面內(nèi)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓和定點(diǎn),由圓外一點(diǎn)向圓引切線(xiàn),切點(diǎn)為,且滿(mǎn)足.
(1)求實(shí)數(shù)間滿(mǎn)足的等量關(guān)系;
(2)若以為圓心的圓與圓有公共點(diǎn),試求圓的半徑最小時(shí)圓的方程;
(3)當(dāng)點(diǎn)的位置發(fā)生變化時(shí),直線(xiàn)是否過(guò)定點(diǎn),如果是,求出定點(diǎn)坐標(biāo),如果不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(A)已知平行四邊形中, , , 為的中點(diǎn), .
(1)求的長(zhǎng);
(2)設(shè), 為線(xiàn)段、上的動(dòng)點(diǎn),且,求的最小值.
(B)已知平行四邊形中, , , 為的中點(diǎn), .
(1)求的長(zhǎng);
(2)設(shè)為線(xiàn)段上的動(dòng)點(diǎn)(不包含端點(diǎn)),求的最小值,以及此時(shí)點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若對(duì)任意x∈[1,+∞),f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com