【題目】某工廠36名工人年齡數(shù)據(jù)如圖:

工人編號

年齡

工人編號

年齡

工人編號

年齡

工人編號

年齡

1
2
3
4
5
6
7
8
9

40
44
40
41
33
40
45
42
43

10
11
12
13
14
15
16
17
18

36
31
38
39
43
45
39
38
36

19
20
21
22
23
24
25
26
27

27
43
41
37
34
42
37
44
42

28
29
30
31
32
33
34
35
36

34
39
43
38
42
53
37
49
39


(1)用系統(tǒng)抽樣法從36名工人中抽取容量為9的樣本,且在第一分段里用隨機抽樣法抽到的年齡數(shù)據(jù)為44,列出樣本的年齡數(shù)據(jù);
(2)計算(1)中樣本的均值 和方差s2;
(3)36名工人中年齡在 ﹣s和 +s之間有多少人?所占百分比是多少(精確到0.01%)?

【答案】
(1)解:由系統(tǒng)抽樣知,36人分成9組,每組4人,其中第一組的工人年齡為44,所以其編號為2,

∴所有樣本數(shù)據(jù)的編號為:4n﹣2,(n=1,2,…,9),

其數(shù)據(jù)為:44,40,36,43,36,37,44,43,37


(2)解:由平均值公式得 = (44+40+36+43+36+37+44+43+37)=40.

由方差公式得s2= [(44﹣40)2+(40﹣40)2+…+(37﹣40)2]=


(3)解:∵s2= .∴s= ∈(3,4),

∴36名工人中年齡在 ﹣s和 +s之間的人數(shù)等于區(qū)間[37,43]的人數(shù),

即40,40,41,…,39,共23人.

∴36名工人中年齡在 ﹣s和 +s之間所占百分比為 ≈63.89%


【解析】(1)利用系統(tǒng)抽樣的定義進行求解即可;(2)根據(jù)均值和方差公式即可計算(1)中樣本的均值 和方差s2;(3)求出樣本和方差即可得到結(jié)論.
【考點精析】根據(jù)題目的已知條件,利用系統(tǒng)抽樣方法和極差、方差與標準差的相關(guān)知識可以得到問題的答案,需要掌握把總體的單位進行排序,再計算出抽樣距離,然后按照這一固定的抽樣距離抽取樣本;第一個樣本采用簡單隨機抽樣的辦法抽取;標準差和方差越大,數(shù)據(jù)的離散程度越大;標準差和方程為0時,樣本各數(shù)據(jù)全相等,數(shù)據(jù)沒有離散性;方差與原始數(shù)據(jù)單位不同,解決實際問題時,多采用標準差.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an+1=λan+2n(n∈N* , λ∈R),且a1=2.
(1)若λ=1,求數(shù)列{an}的通項公式;
(2)若λ=2,證明數(shù)列{ }是等差數(shù)列,并求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過不重合的A(m2+2,m2﹣3),B(3﹣m﹣m2 , 2m)兩點的直線l傾斜角為45°,則m的取值為(
A.m=﹣1
B.m=﹣2
C.m=﹣1或2
D.m=l或m=﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+1滿足f(﹣1)=0,且x∈R時,f(x)的值域為[0,+∞).
(1)求f(x)的表達式;
(2)設(shè)函數(shù)g(x)=f(x)﹣2kx,k∈R. ①若g(x)在x∈[﹣2,2]時是單調(diào)函數(shù),求實數(shù)k的取值范圍;
②若g(x)在x∈[﹣2,2]上的最小值g(x)min=﹣15,求k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD和ADPQ均為正方形,他們所在的平面互相垂直,動點M在線段PQ上,E、F分別為AB、BC的中點,設(shè)異面直線EM與AF所成的角為θ,則cosθ的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:以點 為圓心的圓與x軸交于點O,A,與y軸交于點O、B,其中O為原點,
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=﹣2x+4與圓C交于點M,N,若OM=ON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),Sn表示數(shù)列{an}的前n項的和,且
(1)求數(shù)列{an}的通項公式;
(2)設(shè) ,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C: =1(a>0,b>0)的離心率為 ,實軸長為2,直線l:x﹣y+m=0與雙曲線C交于不同的兩點A,B,
(1)求雙曲線C的方程;
(2)若線段AB的中點在圓x2+y2=5上,求m的值;
(3)若線段AB的長度為4 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1經(jīng)過點A(m,1),B(-3,4),直線l2經(jīng)過點C(1,m),D(-1,m+1),當l1∥l2或l1⊥l2時,分別求實數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案