設(shè)a、b、c為正數(shù),且滿足a2+b2=c2
(1)求證:log2(1+
b+c
a
)+log2(1+
a-c
b
)=1

(2)若log4(1+
b+c
a
)=1
log8(a+b-c)=
2
3
,求a、b、c的值.
分析:(1)利用對(duì)數(shù)的性質(zhì)化簡(jiǎn)等式的左邊,真數(shù)按照多項(xiàng)式的乘法展開(kāi),利用a2+b2=c2即可.
(2)log4(1+
b+c
a
)=1
,log8(a+b-c)=
2
3
,分別去掉對(duì)數(shù)符號(hào),解方程組求出a、b、c的值.
解答:證明:(1)左邊=log2
a+b+c
a
+log2
a+b-c
b
=log2(
a+b+c
a
a+b-c
b
)

=log2
(a+b)2-c2
ab
=log2
a2+2ab+b2-c2
ab
=log2
2ab+c2-c2
ab
=log22=1
;
解:(2)由log4(1+
b+c
a
)=1
1+
b+c
a
=4
,∴-3a+b+c=0①
log8(a+b-c)=
2
3
a+b-c=8
2
3
=4

由①+②得b-a=2③
由①得c=3a-b,代入a2+b2=c2得2a(4a-3b)=0,∵a>0,
∴4a-3b=0④
由③、④解得a=6,b=8,從而c=10.
點(diǎn)評(píng):本題考查對(duì)數(shù)的運(yùn)算性質(zhì),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c為正數(shù),利用排序不等式證明a3+b3+c3≥3abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c為正數(shù),且a+b+4c=1,則
a
+
b
+
2c
的最大值是
10
2
10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b,c為正數(shù),且a+b+c=1,求證:(a+
1
a
2+(b+
1
b
2+(c+
1
c
2
100
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

[選做題]
A.(選修4-1:幾何證明選講)
如圖,△ABC是⊙O的內(nèi)接三角形,PA是⊙O的切線,PB交AC于點(diǎn)E,交⊙O于點(diǎn)D,若PE=PA,
∠ABC=60°,PD=1,BD=8,求BC的長(zhǎng).
B.(選修4-2:矩陣與變換)
二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)設(shè)直線l在變換M作用下得到了直線m:2x-y=4,求l的方程.
C.(選修4-4:坐標(biāo)系與參數(shù)方程)
在極坐標(biāo)系中,設(shè)圓ρ=3上的點(diǎn)到直線ρ(cosθ+
3
sinθ)=2
的距離為d,求d的最大值.
D.(選修4-5:不等式選講)
設(shè)a,b,c為正數(shù)且a+b+c=1,求證:(a+
1
a
)2+(b+
1
b
)2+(c+
1
c
)2
100
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)(1)設(shè)x、y是不全為零的實(shí)數(shù),試比較2x2+y2與x2+xy的大。
(2)設(shè)a,b,c為正數(shù),且a2+b2+c2=1,求證:
1
a2
+
1
b2
+
1
c2
-
2(a3+b3+c3)
abc
≥3.

查看答案和解析>>

同步練習(xí)冊(cè)答案