(本題滿(mǎn)分12分)
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=2n2,{bn}為等比數(shù)列,且a1b1,b2(a2a1)=b1
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和Tn

解:(1)當(dāng)n≥2時(shí),
anSnSn-1=2n2-2(n-1)2=4n-2,當(dāng)n=1時(shí),a1S1=2滿(mǎn)足上式,
故{an}的通項(xiàng)式為an=4n-2.設(shè){bn}的公比為q,由已知條件b2(a2a1)=b1知,b1=2,b2=,所以q=,∴bnb1qn-1=2×,即bn= .                         …….6分
(2)∵cn===(2n-1)4n-1,∴Tnc1c2+…+cn=[1+3×41+5×42+…+(2n-1)4n-1]
4Tn=[1×4+3×42+5×42+…+(2n-3)4n-1+(2n-1)4n]兩式相減得:
3Tn=-1-2(41+42+43+…+4n-1)+(2n-1)4n=[(6n-5)4n+5]
Tn=[(6n-5)4n+5] .                                                  …….12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題11分)已知數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列的前n項(xiàng)和,則
A.=B.=
C.=D.=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)已知f (x)=mx(m為常數(shù),m>0且m≠1).設(shè)f (a1),f (a2),,f (an),(n∈N)是首項(xiàng)為m2,公比為m的等比數(shù)列.
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若bnan f (an),且數(shù)列{bn}的前n項(xiàng)和為Sn,當(dāng)m=3時(shí),求Sn
(3)若cnf(an) lg f (an),問(wèn)是否存在m,使得數(shù)列{cn}中每一項(xiàng)恒不小于它后面的項(xiàng)?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等比數(shù)列{an}中,an > 0,公比q∈(0,1), 且a1a5+2a3a5+a2a8=25, a3與a5的等比中項(xiàng)為2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列是公差為2的等差數(shù)列,且成等比數(shù)列,則的前5項(xiàng)和為(    )
A.20B.30C.25D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在數(shù)列中,若,且對(duì)任意的正整數(shù)都有
的值為  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義:若數(shù)列對(duì)任意的正整數(shù)n,都有d為常數(shù)),則稱(chēng)為“絕對(duì)和數(shù)列”,d叫做“絕對(duì)公和”,已知“絕對(duì)和數(shù)列”,“絕對(duì)公和”,則其前2010項(xiàng)和的最小值為                 

查看答案和解析>>

同步練習(xí)冊(cè)答案