【題目】已知的展開式的二項式系數(shù)之和為32,且展開式中含x3項的系數(shù)為80.
(1)求m和n的值;
(2)求展開式中含x2項的系數(shù).
【答案】
(1)
【解答】解:由題意,,則n=5,由通項公式,則r=3,所以,所以m=2
(2)
【解答】解:=,所以展開式中含 x2項的系數(shù)為 .
【解析】本題主要考查了二項式系數(shù)的性質;二項式定理的應用,解決問題的關鍵是(1)二項式系數(shù)之和為: ,令 易求得n,其次利用二項展開式的通項公式中令r=3,易求得m;(2)在前小題已求得的m,n的基礎上,要求 展開式中求特定項(含x2 項)的系數(shù),只需把兩個二項式展開,對于展開式中的常數(shù)項與 展開式中的x2項的系數(shù)乘,一次項系數(shù)與其一次項系數(shù)乘,二次項系數(shù)與其常數(shù)項乘,再把所得值相加即為所求.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線 : (t為參數(shù)).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的坐標方程為 .
(1)將曲線C的極坐標方程化為直坐標方程;
(2)設點M的直角坐標為 ,直線l與曲線C的交點為A,B,求|MA||MB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=loga(x+1)﹣loga(1﹣x),a>0且a≠1.
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并予以證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),且當x<0時, .
(1)求f(x)的表達式;
(2)判斷并證明函數(shù)f(x)在區(qū)間(0,+∞)上的單調性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即為t(h)內沙塵暴所經(jīng)過的路程s(km).
(1)當t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學關系式表示出來.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知10件不同產(chǎn)品中共有4件次品,現(xiàn)對它們進行一一測試,直至找到所有次品為止.
(1)若恰在第5次測試,才測試到第一件次品,第10次才找到最后一件次品的不同測試方法數(shù)有多少種?
(2)若恰在第5次測試后,就找出了所有次品,則這樣的不同測試方法數(shù)有多少種?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面上,點A、C為射線PM上的兩點,點B、D為射線PN上兩點,則有(其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點A、C為射線PM上的兩點,點B、D為射線PN上的兩點,點E、F為射線PL上的兩點,則有=___________.(其中VP-ABE、VP-CDF分別為四面體P-ABE、P-CDF的體積)。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,其反函數(shù)為y=g(x).
(1)若g(mx2+2x+1)的定義域為R,求實數(shù)m的取值范圍;
(2)當x∈[﹣1,1]時,求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值h(a);
(3)是否存在實數(shù)m>n>2,使得函數(shù)y=h(x)的定義域為[n,m],值域為[n2 , m2],若存在,求出m、n的值;若不存在,則說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com