如圖所示,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A—BCD,則在三棱錐A—BCD中,下列命題正確的是( )
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科幾何體的表面積、體積(解析版) 題型:選擇題
四面體中,則四面體外接球的表面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014高考名師推薦數(shù)學(xué)文科三角函數(shù)恒等變形(解析版) 題型:選擇題
已知函數(shù),則是( )
A. 最小正周期為的奇函數(shù)
B. 最小正周期為的奇函數(shù)
C. 最小正周期為的偶函數(shù)
D. 最小正周期為的偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(四)(解析版) 題型:解答題
已知當(dāng)x=5時,二次函數(shù)f(x)=ax2+bx取得最小值,等差數(shù)列{an}的前n項和Sn=f(n),a2=-7.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}的前n項和為Tn,且bn=,求Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(四)(解析版) 題型:選擇題
已知定義域為R的函數(shù)f(x)滿足:f(4)=-3,且對任意x∈R總有f′(x)<3,則不等式f(x)<3x-15的解集為( )
A.(-∞,4)
B.(-∞,-4)
C.(-∞,-4)∪(4,+∞)
D.(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(四)(解析版) 題型:選擇題
若等比數(shù)列{an}的前n項和Sn=a·3n-2,則a2等于( )
A.4 B.12 C.24 D.36
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(六)(解析版) 題型:解答題
已知函數(shù)f(x)=sin 2x-cos2x-,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c=,f(C)=0,若sin B=2sin A,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(五)(解析版) 題型:解答題
如圖,橢圓C0:(a>b>0,a,b為常數(shù)),動圓C1:x2+y2=t12,b<t1<a.點(diǎn)A1,A2分別為C0的左,右頂點(diǎn),C1與C0相交于A,B,C,D四點(diǎn).
(1)求直線AA1與直線A2B交點(diǎn)M的軌跡方程;
(2)設(shè)動圓C2:x2+y2=t22與C0相交于A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:t12+t22為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(二)(解析版) 題型:選擇題
“θ≠”是“cos θ≠”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com