如圖,在中,,AC、BC邊上的高分別為BD、AE,則以A、B為焦點(diǎn),且過(guò)D、E的橢圓與雙曲線的離心率的倒數(shù)和為      (   )
A.           B.     C.          D.

A

設(shè), 則在橢圓中, 有, 而在雙曲線中, 有, , ∴
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1, 0)、B(1, 0), 動(dòng)點(diǎn)C滿足條件:△ABC的周長(zhǎng)為2+2.記動(dòng)點(diǎn)C的軌跡為曲線W.
(Ⅰ)求W的方程;
(Ⅱ)經(jīng)過(guò)點(diǎn)(0, )且斜率為k的直線l與曲線W有兩個(gè)不同的交點(diǎn)PQ
k的取值范圍;
(Ⅲ)已知點(diǎn)M,0),N(0, 1),在(Ⅱ)的條件下,是否存在常數(shù)k,使得向量共線?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知曲線;(1)由曲線C上任一點(diǎn)E向X軸作垂線,垂足為F,。問(wèn):點(diǎn)P的軌跡可能是圓嗎?請(qǐng)說(shuō)明理由;(2)如果直線L的斜率為,且過(guò)點(diǎn),直線L交曲線C于A,B兩點(diǎn),又,求曲線C的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知點(diǎn),,
若點(diǎn)C滿足,點(diǎn)C的軌跡與拋物線交于A、B兩點(diǎn).
(I)求證:
(II)在軸正半軸上是否存在一定點(diǎn),使得過(guò)點(diǎn)P的任意一條拋物線的弦的長(zhǎng)度是原點(diǎn)到該弦中點(diǎn)距離的2倍,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
已知點(diǎn)),過(guò)點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).
(Ⅰ)求的值(用表示);
(Ⅱ)若以點(diǎn)為圓心的圓與直線相切,求圓面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定點(diǎn)A(-2,0),動(dòng)點(diǎn)B是圓F為圓心)上一點(diǎn),線段AB的垂直平分線交BFP.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)是否存在過(guò)點(diǎn)E(0,-4)的直線lP點(diǎn)的軌跡于點(diǎn)R,T,且滿足 (O為原點(diǎn)),若存在,求直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率,過(guò)橢圓的右焦點(diǎn)作與坐標(biāo)軸不垂直的直線交橢圓于兩點(diǎn).
(1)求橢圓方程; 
(2)設(shè)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),且,求的取值范圍;
(3)設(shè)點(diǎn)是點(diǎn)關(guān)于軸對(duì)稱點(diǎn),在軸上是否存在一個(gè)定點(diǎn),使得三點(diǎn)共線?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題



A,B恒有
(1)求弦AB中點(diǎn)M的軌跡方程
(2)以AP和PB為鄰邊作矩形AQBP,求點(diǎn)Q軌跡方程
(3)若x,y滿足Q點(diǎn)軌跡方程,求的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

長(zhǎng)度為a的線段AB的兩個(gè)端點(diǎn)A、B都在拋物線y2=2Px(P>0,a>2P)上滑動(dòng),則線段AB的中點(diǎn)My軸的最短距離為_____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案