要得到函數(shù)y=3sin(2x+
π
3
)的圖象,只要把函數(shù)y=3sin2x圖象(  )
A.向右平移
π
3
個(gè)單位
B.向左平移
π
3
個(gè)單位
C.向右平移
π
6
個(gè)單位
D.向左平移
π
6
個(gè)單位
由于函數(shù)y=3sin(2x+
π
3
)=3sin2(x+
π
6
),
故只要將函數(shù)y=3sin2x的圖象相左平移
π
6
個(gè)單位,
即可得到函數(shù)y=3sin(2x+
π
3
)的圖象.
故答案為:D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知f(x)=sin(2x+
π
3
)

(1)求函數(shù)f(x)的遞減區(qū)間;
(2)用五點(diǎn)法作出函數(shù)在一個(gè)周期內(nèi)的圖象,并說明它是由y=sinx的圖象依次經(jīng)過哪些變換而得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=3sin(2x-
π
3
)的圖象為C,下列命題:
①圖象C關(guān)于直線x=
11
12
π對稱;
②函數(shù)f(x)在區(qū)間(-
π
12
,
12
)內(nèi)是增函數(shù);
③將y=sin(2x-
π
3
)的圖象上的點(diǎn)橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉淼?倍即可得到圖象C;
④圖象C關(guān)于點(diǎn)(
π
3
,0)對稱.
其中,正確命題的編號是______.(寫出所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

先將函數(shù)y=f(x)的圖象向右移
π
6
個(gè)單位,再將所得的圖象作關(guān)于直線x=
π
4
的對稱變換,得到y=sin(-2x+
π
3
)
的函數(shù)圖象,則f(x)的解析式是( 。
A.y=sin(-2x+
π
3
)
B.y=sin(-2x-
π
3
)
C.y=sin(2x-
π
3
)
D.y=sin(2x+
π
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)y=sin(ωx+φ)(ω>0,0<φ<
π
2
),且此函數(shù)的圖象如圖所示,則點(diǎn)(ω,φ)的坐標(biāo)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)一個(gè)周期的圖象如圖所示.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若f(α)+f(α-
π
3
)=
24
25
,且α為△ABC的一個(gè)內(nèi)角,求sinα+cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某簡諧運(yùn)動(dòng)的圖象對應(yīng)的函數(shù)函數(shù)解析式為:f(x)=3sin(
x
2
+
π
6
)-1

(1)指出f(x)的周期、振幅、頻率、相位、初相;
(2)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(3)求函數(shù)圖象的對稱中心和對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

將函數(shù)y=f(x)的圖象向左平移1個(gè)單位,再縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的
π
3
倍,然后再向上平移1個(gè)單位,得到函數(shù)y=
3
sinx
的圖象.
(1)求y=f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=2對稱,求當(dāng)x∈[0,1]時(shí),函數(shù)y=g(x)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

值為(   ).
A.B.C.-D.-

查看答案和解析>>

同步練習(xí)冊答案