已知橢圓=1的中心在直線y=3x+1上移動,而且對它的軸只作平行移動,求:
(1)中心移動時的橢圓方程;(2)中心移到什么位置時,橢圓與y=x+1相切?(3)中心移到什么位置時,只需平移x軸就可以將橢圓方程化成標(biāo)準(zhǔn)方程,并指出如何平移.
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)求橢圓的方程;
(Ⅱ)若點P為l上的動點,求∠F1PF2最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知方向向量為的直線過橢圓C:=1(a>b>0)的焦點以及點(0,),橢圓C的中心關(guān)于直線的對稱點在橢圓C的右準(zhǔn)線上。
⑴求橢圓C的方程。
⑵過點E(-2,0)的直線交橢圓C于點M、N,且滿足,(O為坐標(biāo)原點),求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省淄博市高三上學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題
14分)已知橢圓中心在原點,焦點在x軸上,一個頂點為A(0,-1),且其右焦點到直線x-y+=0的距離為3.(I)求橢圓的方程;
(II)是否存在斜率為k(k≠0)的直線l,使l與已知橢圓交于不同的兩點M、N,
且|AN|=|AM|?若存在,求出k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山東省濟(jì)寧市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)
已知雙曲線G的中心在原點,它的漸近線與圓x2+y2-10x+20=0相切.過點P(-4,0)作斜率為的直線,使得和G交于A,B兩點,和y軸交于點C,并且點P在線段AB上,又滿足|PA|·|PB|=|PC|2.
(1)求雙曲線G的漸近線的方程;
(2)求雙曲線G的方程;
(3)橢圓S的中心在原點,它的短軸是G的實軸.如果S中垂直于的平行弦的中點的軌跡恰好是G的漸近線截在S內(nèi)的部分AB,若P(x,y)(y>0)為橢圓上一點,求當(dāng)的面積最大時點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com