精英家教網(wǎng)已知?jiǎng)狱c(diǎn)M到點(diǎn)F(1,0)的距離,等于它到直線x=-1的距離.
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)F任意作互相垂直的兩條直線l1,l2,分別交曲線C于點(diǎn)A,B和M,N.設(shè)線段AB,MN的中點(diǎn)分別為P,Q,求證:直線PQ恒過(guò)一個(gè)定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,求△FPQ面積的最小值.
分析:(Ⅰ)設(shè)動(dòng)點(diǎn)M的坐標(biāo)為(x,y),由題意得
(x-1)2+y2
=|x+1|
,由此能求出點(diǎn)M的軌跡C的方程.
(Ⅱ)設(shè)A,B兩點(diǎn)坐標(biāo)分別為(x1,y1),(x2,y2),則點(diǎn)P的坐標(biāo)為(
x1+x2
2
,
y1+y2
2
)
.由題意可設(shè)直線l1的方程為y=k(x-1)(k≠0),由
y2=4x
y=k(x-1)
得k2x2-(2k2+4)x+k2=0.再由根的判別式和根與系數(shù)的關(guān)系進(jìn)行求解.
(Ⅲ)題題設(shè)能求出|EF|=2,所以△FPQ面積S=
1
2
|FE|(
2
|k|
+2|k|)=2(
1
|k|
+|k|)≥4
解答:解:(Ⅰ)設(shè)動(dòng)點(diǎn)M的坐標(biāo)為(x,y),
由題意得,
(x-1)2+y2
=|x+1|
,
化簡(jiǎn)得y2=4x,
所以點(diǎn)M的軌跡C的方程為y2=4x.(4分)
(Ⅱ)設(shè)A,B兩點(diǎn)坐標(biāo)分別為(x1,y1),(x2,y2),
則點(diǎn)P的坐標(biāo)為(
x1+x2
2
,
y1+y2
2
)

由題意可設(shè)直線l1的方程為y=k(x-1)(k≠0),
y2=4x
y=k(x-1)
得k2x2-(2k2+4)x+k2=0.
△=(2k2+4)2-4k4=16k2+16>0.
因?yàn)橹本l1與曲線C于A,B兩點(diǎn),
所以x1+x2=2+
4
k2
,
y1+y2=k(x1+x2-2)=
4
k

所以點(diǎn)P的坐標(biāo)為(1+
2
k2
,
2
k
)

由題知,直線l2的斜率為-
1
k
,同理可得點(diǎn)的坐標(biāo)為(1+2k2,-2k).
當(dāng)k≠±1時(shí),有1+
2
k2
≠1+2k2
,
此時(shí)直線PQ的斜率kPQ=
2
k
+2k
1+
2
k2
-1-2k2
=
k
1-k2

所以,直線PQ的方程為y+2k=
k
1-k2
(x-1-2k2)
,
整理得yk2+(x-3)k-y=0.
于是,直線PQ恒過(guò)定點(diǎn)E(3,0);
當(dāng)k=±1時(shí),直線PQ的方程為x=3,也過(guò)點(diǎn)E(3,0).
綜上所述,直線PQ恒過(guò)定點(diǎn)E(3,0).(10分)
(Ⅲ)可求得|EF|=2,
所以△FPQ面積S=
1
2
|EF|(
2
|k|
+2|k|)=2(
1
|k|
+|k|)≥4

當(dāng)且僅當(dāng)k=±1時(shí),“=”成立,所以△FPQ面積的最小值為4.(13分)
點(diǎn)評(píng):本題考查圓錐曲線和直線的位置關(guān)系和綜合應(yīng)用,具有一定的難度,解題時(shí)要認(rèn)真審題,注意挖掘隱含條件,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)M到點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離大1個(gè)單位長(zhǎng)度.
(1)求點(diǎn)M的軌跡C的方程;
(2)過(guò)點(diǎn)F任意作互相垂直的兩條直線l1,l2,分別交曲線C于點(diǎn)A、B和M、N,設(shè)線段AB、MN的中點(diǎn)分別為P、Q,求證:直線PQ恒過(guò)一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山西省太原市高三模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

((本小題滿分12分)

    已知?jiǎng)狱c(diǎn)M到點(diǎn)F(1,0)的距離比它到軸的距離大1個(gè)單位長(zhǎng)度。

   (Ⅰ)求點(diǎn)M的軌跡C的方程;

   (Ⅱ)過(guò)點(diǎn)F任意作互相垂直的兩條直線,分別交曲線C于點(diǎn)A、B和M、N,設(shè)線段AB、MN的中點(diǎn)分別為P、Q,求證:直線PQ恒過(guò)一個(gè)定點(diǎn)。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山西省運(yùn)城市康杰中學(xué)高考數(shù)學(xué)模擬試卷1(理科)(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)M到點(diǎn)F(1,0)的距離比它到y(tǒng)軸的距離大1個(gè)單位長(zhǎng)度.
(1)求點(diǎn)M的軌跡C的方程;
(2)過(guò)點(diǎn)F任意作互相垂直的兩條直線l1,l2,分別交曲線C于點(diǎn)A、B和M、N,設(shè)線段AB、MN的中點(diǎn)分別為P、Q,求證:直線PQ恒過(guò)一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年河南省濮陽(yáng)市高三摸底數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知?jiǎng)狱c(diǎn)M到點(diǎn)F(1,0)的距離,等于它到直線x=-1的距離.
(Ⅰ)求點(diǎn)M的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)F任意作互相垂直的兩條直線l1,l2,分別交曲線C于點(diǎn)A,B和M,N.設(shè)線段AB,MN的中點(diǎn)分別為P,Q,求證:直線PQ恒過(guò)一個(gè)定點(diǎn);
(Ⅲ)在(Ⅱ)的條件下,求△FPQ面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案