【題目】在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且sinCcosB+sinBcosC=3sinAcosB;
(1)求cosB的值;
(2)若 =2,且b=2 ,求a+c的值.

【答案】
(1)解:由sinCcosB+sinBcosC=3sinAcosB,得sin(B+C)=3sinAcosB,

因?yàn)锳、B、C是△ABC的三內(nèi)角,所以sin(B+C)=sinA≠0,

因此cosB=


(2)解: =| || |cosB= ac=2,即ac=6,

由余弦定理得b2=a2+c2﹣2accosB,所以a2+c2=12,

解方程組 ,

得 a=c=

所以a+c=2


【解析】(1)由條件得sin(B+C)=3sinAcosB,再由sin(B+C)=sinA≠0,可得 cosB= .(2)由兩個(gè)向量的數(shù)量積的定義得到ac=6,再由余弦定理可得a2+c2=12,解方程組可求得a和c的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】a,b,c均為實(shí)數(shù),且,,

試用反證法證明:ab,c中至少有一個(gè)大于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1= 的正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= 其中P,M是非空數(shù)集,且P∩M=,設(shè)f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(I)若P=(﹣∞,0),M=[0,4],求f(P)∪f(wàn)(M);
(II)是否存在實(shí)數(shù)a>﹣3,使得P∪M=[﹣3,a],且f(P)∪f(wàn)(M)=[﹣3,2a﹣3]?若存在,請(qǐng)求出滿足條件的實(shí)數(shù)a;若不存在,請(qǐng)說(shuō)明理由;
(III)若P∪M=R,且0∈M,I∈P,f(x)是單調(diào)遞增函數(shù),求集合P,M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=ax+bx﹣cx , 其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長(zhǎng),則下列結(jié)論中正確的是( )
①對(duì)一切x∈(﹣∞,1)都有f(x)>0;
②存在x∈R+ , 使ax , bx , cx不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng);
③若△ABC為鈍角三角形,則存在x∈(1,2),使f(x)=0.
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間如下:

組號(hào)

第一組

第二組

第三組

第四組

第五組

分組

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(1)求圖中a的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,a,b,c分別為角AB,C所對(duì)的三邊,

(I)求角A

(II)若,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于不等式,則對(duì)區(qū)間上的任意x都成立的實(shí)數(shù)t的取值范圍是_______

【答案】

【解析】

根據(jù)二次函數(shù)的單調(diào)性求出x2﹣3x+2在區(qū)間[0,2]上的最小值和最大值,把問(wèn)題轉(zhuǎn)化關(guān)于t的不等式組得答案.

∵x2﹣3x+2=,

當(dāng)x[0,2]時(shí),,(x2﹣3x+2)max=2.

對(duì)于不等式(2t﹣t2)≤x2﹣3x+2≤3﹣t2,對(duì)區(qū)間[0,2]上任意x都成立的實(shí)數(shù)t的取值范圍是[﹣1,1﹣].

故答案為:[﹣1,1﹣].

【點(diǎn)睛】

本題考查函數(shù)恒成立問(wèn)題,考查了不等式的解法,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是基礎(chǔ)題.二次不等式分含參二次不等式和不含參二次不等式;對(duì)于含參的二次不等式問(wèn)題,先判斷二次項(xiàng)系數(shù)是否含參,接著討論參數(shù)等于0,不等于0,再看式子能否因式分解,若能夠因式分解則進(jìn)行分解,再比較兩根大小,結(jié)合圖像得到不等式的解集.

型】填空
結(jié)束】
16

【題目】等差數(shù)列{an}的公差d≠0滿足成等比數(shù)列,若=1,Sn{}的前n項(xiàng)和,則的最小值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用長(zhǎng)為18 cm的鋼條圍成一個(gè)長(zhǎng)方體形狀的框架,要求長(zhǎng)方體的長(zhǎng)與寬之比為21,問(wèn)該長(zhǎng)方體的長(zhǎng)、寬、高各為多少時(shí),其體積最大?最大體積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案