已知二次函數(shù)f(x)=x2+(a+2)x+b滿足f(-1)=-2.
(1)若方程f(x)=2x有唯一解,求實(shí)數(shù)a,b的值;
(2)當(dāng)x∈[-2,2]時(shí),函數(shù)f(x)在頂點(diǎn)取得最小值,求實(shí)數(shù)a的取值范圍.
由f(-1)=-2得:1-a-2+b=-2,即a-b=1①,
(1)把f(x)的解析式代入f(x)=2x中,得到x2+ax+b=0,
因?yàn)榉匠逃晌ㄒ坏慕,所以?a2-4b=0②,
由①得:a=b+1,代入②得:(b-1)2=0,解得b=1,把b=2代入①解得:a=2;
(2)因?yàn)槎魏瘮?shù)f(x)=x2+(a+2)x+b為開口向上的拋物線,且當(dāng)x∈[-2,2]時(shí),函數(shù)f(x)在頂點(diǎn)取得最小值,
所以對稱軸x=-
a+2
2
∈[-2,2],即
-
a+2
2
≥-2①
-
a+2
2
≤2②
,
由①解得:a≤2;由②解得a≥-6,所以不等式組的解集為-6≤x≤2.
故a的取值范圍是-6≤x≤2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)f(x)滿足f(0)=1,f(1)=-1,f(
3
2
+x)=f(
3
2
-x)

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若方程f(x)=-mx的兩根x1和x2滿足x1<x2<1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)時(shí)有最大值1,,并且時(shí),的取值范圍為. 試求m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知y=f(x)為二次函數(shù),若y=f(x)在x=2處取得最小值-4,且y=f(x)的圖象經(jīng)過原點(diǎn),
(1)求f(x)的表達(dá)式;
(2)求函數(shù)y=f(log
1
2
x)
在區(qū)間[
1
8
,2]
上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若二次函數(shù)滿足f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)若在區(qū)間[-1,1]上不等式f(x)>2x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)y=x2+(a+1)x-1在[-2,2]上單調(diào),則a的范圍是( 。
A.a(chǎn)≥3B.a(chǎn)≤-5C.a(chǎn)≥3或a≤-5D.a(chǎn)>3或a<-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)f(x)=x2-2(a-3)x+3在區(qū)間(-∞,4)上是減函數(shù),則實(shí)數(shù)a的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

二次函數(shù)y=x2+ax+b的圖象過點(diǎn)(2,2),且對于任意實(shí)數(shù)x,恒有y≥x,求實(shí)數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則(   )
A.B.C.1D.7

查看答案和解析>>

同步練習(xí)冊答案