已知橢圓G:的右焦點F為,G上的點到點F的最大距離為,斜率為1的直線與橢圓G交與兩點,以AB為底邊作等腰三角形,頂點為P(-3,2)
(1)求橢圓G的方程;
(2)求的面積。
(1) ;  (2)

試題分析:(1)因為橢圓G:的右焦點F為,所以c=
因為G上的點到點F的最大距離為,所以a+c=,又因為,所以a=,b=2,c=,所以橢圓G的方程為
(2)易知直線的斜率存在,所以設直線為:,聯(lián)立橢圓方程得:,設,則,
過點P(-3,2)且與垂直的直線為:,A、B的中點M在此直線上,所以
所以A、B的中點坐標為M(),所以|PM|=,
又|AB|=,所以S=。
點評:橢圓上的一點到焦點的最大距離 =" a+c" ,最小距離 =" a-c" ,到焦點距離最大點和最小點是橢圓長軸的端點。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

( )拋物線的準線方程是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線y=1+與直線y=k(x-2)+4有兩個交點,則實數(shù)k的取值范圍是(  )
A.(0,)B.(,+∞)
C.(,]D.(]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

A(2,3),F(xiàn)為拋物線y2=6x焦點,P為拋物線上動點,則|PF|+|PA|的最小值為(   )
A.5B.4.5C.3.5D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓上有n個不同的點:P1 ,P2 ,…,Pn, 橢圓的右焦點為F,數(shù)列{|PnF|}是公差大于的等差數(shù)列, 則n的最大值是(   )
A.198B.199 C.200D.201

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

經(jīng)過橢圓的右焦點作傾斜角為的直線,交橢圓于A、B兩點,O為坐標原點,則 ( )
A.  -3
B.
C.  -3或
D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓和雙曲線,有相同的焦點,則橢圓與雙曲線的離心率的平方和為(  )
A.B.C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設直線關于原點對稱的直線為,若與橢圓的交點為P、Q, 點M為橢圓上的動點,則使△MPQ的面積為的點M的個數(shù)為
A.1B.2 C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的離心率是,其焦點為,P是雙曲線上一點,
,若的面積等于9,則(  )
A.5B.6C.7 D.8

查看答案和解析>>

同步練習冊答案