【題目】已知函數(shù),的在數(shù)集上都有定義,對(duì)于任意的,當(dāng)時(shí),或成立,則稱是數(shù)集上的限制函數(shù).
(1)求在上的限制函數(shù)的解析式;
(2)證明:如果在區(qū)間上恒為正值,則在上是增函數(shù);[注:如果在區(qū)間上恒為負(fù)值,則在區(qū)間上是減函數(shù),此結(jié)論無(wú)需證明,可以直接應(yīng)用]
(3)利用(2)的結(jié)論,求函數(shù)在上的單調(diào)區(qū)間.
【答案】(1);(2)證明見(jiàn)解析;(3)見(jiàn)解析.
【解析】
(1)由題目給出的條件,構(gòu)造,根據(jù)條件驗(yàn)證可得所求函數(shù);
(2)運(yùn)用反證法,即可得證;
(3)求得,根據(jù)第二問(wèn)結(jié)論由大于0,可得增區(qū)間;小于0,可得減區(qū)間.
解:(1)任意的,;
由于任意性:;
故構(gòu)造;
由冪函數(shù)性質(zhì)得在單調(diào)遞減,
且易得:,滿足題意,
故:;
(2)運(yùn)用反證法,即假設(shè)在上不是增函數(shù),
若在上是減函數(shù),可得在區(qū)間上恒為負(fù)值;
若在上是常數(shù)函數(shù),可得在區(qū)間上恒為零;
若在上是有增有減,可得在區(qū)間上可能為正可能為負(fù);
這與在區(qū)間上恒為正值矛盾,故在上是增函數(shù);
(3)任意的,當(dāng),
,
構(gòu)造;
任取,,
,
,
故:,
是數(shù)集上的限制函數(shù),
,解得
利用(2)結(jié)論,當(dāng)函數(shù)單調(diào)遞增,
,解得
利用(2)結(jié)論,當(dāng)函數(shù)單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①在直角梯形ABCP中,,,,,E,F,G分別是線段PC,PD,BC的中點(diǎn),現(xiàn)將折起,使平面平面ABCD如圖②.
(1)求證:平面EFG;
(2)求二面角G—EF—D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在線段的兩端點(diǎn)各置一個(gè)光源,已知光源,的發(fā)光強(qiáng)度之比為,則線段上光照度最小的一點(diǎn)到,的距離之比為______(光學(xué)定律:點(diǎn)的光照度與到光源的距離的平方成反比,與光源的發(fā)光強(qiáng)度成正比)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年國(guó)際籃聯(lián)籃球世界杯,將于2019年在的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳世界杯,某大學(xué)從全校學(xué)生中隨機(jī)抽取了名學(xué)生,對(duì)是否收看籃球世界杯賽事的情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
會(huì)收看 | 不會(huì)收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(1)根據(jù)上表說(shuō)明,能否有的把握認(rèn)為收看籃球世界杯賽事與性別有關(guān)?
(2)現(xiàn)從參與問(wèn)卷調(diào)查且收看籃球世界杯賽事的學(xué)生中,采用按性別分層抽樣的方法選取人參加2019年國(guó)際籃聯(lián)籃球世界杯賽志愿者宣傳活動(dòng).
(i)求男、女學(xué)生各選取多少人;
(ii)若從這人中隨機(jī)選取人到校廣播站開(kāi)展2019年國(guó)際籃聯(lián)籃球世界杯賽宣傳介紹,求恰好選到名男生的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐(如圖1)的平面展開(kāi)圖(如圖2)中,四邊形為邊長(zhǎng)為的正方形,△ABE和△BCF均為正三角形,在三棱錐中:
(I)證明:平面 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若點(diǎn)在棱上,滿足, ,點(diǎn)在棱上,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(),,其中為自然對(duì)數(shù)的底數(shù).
(1)若恒成立,求實(shí)數(shù)的取值范圍;
(2)若在(1)的條件下,當(dāng)取最大值時(shí),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有10名選手參加某項(xiàng)詩(shī)詞比賽,計(jì)分規(guī)則如下:比賽共有6道題,對(duì)于每一道題,10名選手都必須作答,若恰有個(gè)人答錯(cuò),則答對(duì)的選手該題每人得分,答錯(cuò)選手該題不得分.比賽結(jié)束后,關(guān)于選手得分情況有如下結(jié)論:
①若選手甲答對(duì)6道題,選手乙答對(duì)5道題,則甲比乙至少多得1分:
②若選手甲和選手乙都答對(duì)5道題,則甲和乙得分相同;
③若選手甲的總分比其他選手都高,則甲最高可得54分
其中正確結(jié)論的個(gè)數(shù)是( )
A.0B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 某創(chuàng)業(yè)投資公司擬投資開(kāi)發(fā)某種新能源產(chǎn)品,估計(jì)能獲得25萬(wàn)元~ 1600萬(wàn)元的投資收益,現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬(wàn)元)隨投資收益x(單位:萬(wàn)元)的增加而增加,獎(jiǎng)金不超過(guò)75萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)投資收益的20%.(即:設(shè)獎(jiǎng)勵(lì)方案函數(shù)模型為y=f (x)時(shí),則公司對(duì)函數(shù)模型的基本要求是:當(dāng)x∈[25,1600]時(shí),①f(x)是增函數(shù);②f (x) 75恒成立; 恒成立.
(1)判斷函數(shù)是否符合公司獎(jiǎng)勵(lì)方案函數(shù)模型的要求,并說(shuō)明理由;
(2)已知函數(shù)符合公司獎(jiǎng)勵(lì)方案函數(shù)模型要求,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)性;
(2)若對(duì)定義域內(nèi)任意的,都恒成立,求a的取值范圍;
(3)記,若在區(qū)間內(nèi)有2個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com