已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線l與橢圓C交于AB兩點,坐標(biāo)原點O到直線l的距離為,求△AOB面積的最大值.

 

【答案】

(Ⅰ).(Ⅱ)

【解析】

試題分析:(Ⅰ)設(shè)橢圓的半焦距為,依題意

,所求橢圓方程為.   4分

(Ⅱ)設(shè),

(1)當(dāng)軸時,.    5分

(2)當(dāng)軸不垂直時,

設(shè)直線的方程為

由已知,得

代入橢圓方程,整理得,

,.    8分

. 10分

當(dāng)且僅當(dāng),即時等號成立.當(dāng)時,

綜上所述

當(dāng)最大時,面積取最大值       12分

考點:本題考查了橢圓的方程及直線與橢圓的位置關(guān)系

點評:解析幾何綜合題主要考查直線和圓錐曲線的位置關(guān)系以及范圍、最值、定點、定值、存在性等問題

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:=1(a>b>0),直線l1:=1被橢圓C截得的弦長為2,過橢圓C的右焦點且斜率為3的直線l2被橢圓C截得的弦長是橢圓長軸長的,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:選擇題

已知橢圓C:+=1(a>b>0)的離心率為.雙曲線x2-y2=1的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓C的方程為(  )

(A) +=1 (B) +=1

(C) +=1 (D) +=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0),左、右兩個焦點分別為F1,F2,上頂點A(0,b),AF1F2為正三角形且周長為6.

(1)求橢圓C的標(biāo)準(zhǔn)方程及離心率;

(2)O為坐標(biāo)原點,P是直線F1A上的一個動點,|PF2|+|PO|的最小值,并求出此時點P的坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+=0相切,過點P(4,0)且不垂直于x軸直線l與橢圓C相交于AB兩點.

(1)求橢圓C的方程;

(2)·的取值范圍;

(3)B點關(guān)于x軸的對稱點是E,證明:直線AEx軸相交于定點.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)的焦距為4,且過點P(,).

(1)求橢圓C的方程;

(2)設(shè)Q(x0,y0)(x0y00)為橢圓C上一點.過點Qx軸的垂線,垂足為E.取點A(0,2),連接AE,過點AAE的垂線交x軸于點D.G是點D關(guān)于y軸的對稱點,作直線QG,問這樣作出的直線QG是否與橢圓C一定有唯一的公共點?并說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案