如圖,在空間直角坐標系中有直三棱柱ABC ?A1B1C1,CACC12CB,則直線BC1與直線AB1夾角的余弦值為(  )

A. B. C. D.

 

A

【解析】設(shè)CA2,則C(0,0,0)A(2,0,0),B(0,0,1),C1(0,2,0),B1(0,2,1),可得(2,2,1),(0,2,-1),由向量的夾角公式得cos,〉=

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練7練習卷(解析版) 題型:填空題

α,βcos sin =-,則cos (αβ)________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練15練習卷(解析版) 題型:解答題

已知橢圓C的中心為平面直角坐標系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是71.

(1)求橢圓C的方程;

(2)P為橢圓C上的動點,M為過P且垂直于x軸的直線上的一點,λ,求點M的軌跡方程,并說明軌跡是什么曲線.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練14練習卷(解析版) 題型:選擇題

已知圓的方程為x2y26x8y0,設(shè)該圓中過點(3,5)的最長弦和最短弦分別為ACBD,則四邊形ABCD的面積是(  )

A10 B20 C30 D40

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練13練習卷(解析版) 題型:填空題

已知正四棱錐P-ABCD的側(cè)棱與底面所成角為60°,MPA中點,連接DM,則DM與平面PAC所成角的大小是________

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練12練習卷(解析版) 題型:解答題

如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EFBD,ABEF.

(1)求證:BF平面ACE;

(2)求證:BFBD.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練12練習卷(解析版) 題型:選擇題

已知α,β,γ是三個不重合的平面,a,b是兩條不重合的直線,有下列三個條件:aγ,b?β;aγ,bβbβ,a?γ.如果命題αβa,b?γ,且________,那么ab為真命題,則可以在橫線處填入的條件是(  )

A BC D.只有

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練訓練10練習卷(解析版) 題型:填空題

觀察下列等式

121

1222=-3

1222326

12223242=-10

……

照此規(guī)律,第n個等式可為________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題提升訓練優(yōu)化重組卷3練習卷(解析版) 題型:解答題

已知數(shù)列{an}的前n項和是Sn,且Snan1.

(1)求數(shù)列{an}的通項公式;

(2)bnlog3,數(shù)列的前n項和為Tn,證明:Tn<.

 

查看答案和解析>>

同步練習冊答案