【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如下圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長潛伏者”.
短潛伏者 | 長潛伏者 | 合計 | |
60歲及以上 | 90 | ||
60歲以下 | 140 | ||
合計 | 300 |
(1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計算出這500名患者中“長潛伏者”的人數(shù);
(2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為潛伏期長短與患者年齡有關(guān):
(3)研究發(fā)現(xiàn),有5種藥物對新冠病毒有一定的抑制作用,其中有2種特別有效,現(xiàn)在要通過逐一試驗直到把這2種特別有效的藥物找出來為止,每一次試驗花費(fèi)的費(fèi)用是500元,設(shè)所需要的試驗費(fèi)用為X,求X的分布列與數(shù)學(xué)期望.
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)平均數(shù)為,“長潛伏者”的人數(shù)為人
(2)列聯(lián)表見解析, 有97.5%的把握認(rèn)為潛伏期長短與年齡有關(guān)
(3)分布列見解析,
【解析】
(1)由頻率分布直方圖可計算出潛伏期的均值,再由頻率分布直方圖可得“長潛伏者”的頻率,從而得人數(shù);
(2)由所給數(shù)據(jù)計算出后可得結(jié)論;
(3)由題意知所需要的試驗費(fèi)用X所有可能的取值為1000,1500,2000,分別計算出概率得概率分布列,再由期望公式得期望.
解:(1)平均數(shù),
這500名患者中“長潛伏者”的頻率為,所以“長潛伏者”的人數(shù)為人.
(2)由題意補(bǔ)充后的列聯(lián)表如下,
短潛伏者 | 長潛伏者 | 合計 | |
60歲及以上 | 90 | 70 | 160 |
60歲以下 | 60 | 80 | 140 |
合計 | 150 | 150 | 300 |
則的觀測值為,
經(jīng)查表,得,所以有97.5%的把握認(rèn)為潛伏期長短與年齡有關(guān).
(3)由題意知所需要的試驗費(fèi)用X所有可能的取值
為1000,1500,2000,因為,
,
(或)
所以X的分布列為
X | 1000 | 1500 | 2000 |
P |
(元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改編自中國神話故事的動畫電影《哪吒之魔童降世》自7月26日首映,在不到一個月的時間,票房收入就超過了38億元,創(chuàng)造了中國動畫電影的神話.小明和同學(xué)相約去電影院觀看《哪吒之魔童降世》,影院的三個放映廳分別在7:30,8:00,8:30開始放映,小明和同學(xué)大約在7:40至8:30之間到達(dá)影院,且他們到達(dá)影院的時間是隨機(jī)的,那么他們到達(dá)后等待的時間不超過10分鐘的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在統(tǒng)計學(xué)中,同比增長率一般是指和去年同期相比較的增長率,環(huán)比增長率一般是指和前一時期相比較的增長率.2020年2月29日人民網(wǎng)發(fā)布了我國2019年國民經(jīng)濟(jì)和社會發(fā)展統(tǒng)計公報圖表,根據(jù)2019年居民消費(fèi)價格月度漲跌幅度統(tǒng)計折線圖,下列說法正確的是( )
A.2019年我國居民每月消費(fèi)價格與2018年同期相比有漲有跌
B.2019年我國居民每月消費(fèi)價格中2月消費(fèi)價格最高
C.2019年我國居民每月消費(fèi)價格逐月遞增
D.2019年我國居民每月消費(fèi)價格3月份較2月份有所下降
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取100個商家,對它們的“平均送達(dá)時間”進(jìn)行統(tǒng)計,得到頻率分布直方圖如下.
(1)已知抽取的100個使用A款訂餐軟件的商家中,甲商家的“平均送達(dá)時間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達(dá)時間”不超過20分鐘的商家中隨機(jī)抽取3個商家進(jìn)行市場調(diào)研,求甲商家被抽到的概率;
(2)試估計該市使用A款訂餐軟件的商家的“平均送達(dá)時間”的眾數(shù)及平均數(shù);
(3)如果以“平均送達(dá)時間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于由正整數(shù)構(gòu)成的數(shù)列,若對任意,“且,也是中的項,則稱為數(shù)列”.設(shè)數(shù)列|滿足,..
(1)請給出一個的通項公式,使得既是等差數(shù)列也是“數(shù)列”,并說明理由;
(2)根據(jù)你給出的通項公式,設(shè)的前項和為,求滿足的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)寫出直線的普通方程和曲線C的直角坐標(biāo)方程;
(2)已知定點(diǎn),直線與曲線C分別交于P、Q兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)討論的單調(diào)性;
(2)當(dāng)時,若不等式恒成立,求整數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以昆明、玉溪為中心的滇中地區(qū),冬無嚴(yán)寒、夏無酷暑,世界上主要的鮮切花品種在這里都能實現(xiàn)周年規(guī);a(chǎn).某鮮花批發(fā)店每天早晨以每支2元的價格從鮮切花生產(chǎn)基地購入某種玫瑰,經(jīng)過保鮮加工后全部裝箱(每箱500支,平均每支玫瑰的保鮮加工成本為1元),然后以每箱2000元的價格整箱出售.由于鮮花的保鮮特點(diǎn),制定了如下促銷策略:若每天下午3點(diǎn)以前所購進(jìn)的玫瑰沒有售完,則對未售出的玫瑰以每箱1200元的價格降價處理.根據(jù)經(jīng)驗,降價后能夠把剩余玫瑰全部處理完畢,且當(dāng)天不再購進(jìn)該種玫瑰,由于庫房限制每天最多加工6箱.
(1)若某天該鮮花批發(fā)店購入并加工了6箱該種玫瑰,在下午3點(diǎn)以前售出4箱,且被6位不同的顧客購買.現(xiàn)從這6位顧客中隨機(jī)選取2人贈送優(yōu)惠卡,則恰好一位是以2000元價格購買的顧客,另一位是以1200元價格購買的顧客的概率是多少?
(2)該鮮花批發(fā)店統(tǒng)計了100天內(nèi)該種玫瑰在每天下午3點(diǎn)以前的銷售量(單位:箱),統(tǒng)計結(jié)果如下表所示(視頻率為概率):
/箱 | 4 | 5 | 6 |
頻數(shù) | 30 |
①估計接下來的一個月(30天)內(nèi)該種玫瑰每天下午3點(diǎn)以前的銷售量不少于5箱的天數(shù)是多少?
②若批發(fā)店每天在購進(jìn)5箱數(shù)量的玫瑰時所獲得的平均利潤最大(不考慮其他成本),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com